首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

2.
Warfarin is the cardinal anticoagulant drug prescribed around the world. Due to stochastic bleeding in patients, it is essential to adjust the dose for every individual. The aim of the present study was to evaluate the frequency of CYP2C9 and VKORC1 gene polymorphisms and their association with warfarin maintenance dose in a sample of cardiovascular patients in Birjand, South-Khorasan province of Iran. Patients with a history of cardiovascular disorders who take warfarin daily were selected. CYP2C9 and VKORC1 gene polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism in all participants. A total of 114 patients (mean age: 52.7 ± 14.9 years, M/F ratio: 0.76) participated in this study. Regarding CYP2C9 gene polymorphisms, the most frequent genotype was 1*/1* (80.4% in females and 62.5% in males). The frequency of 1*/2* and 2*/2* variants was 13% and 6.5% in females and 25% and 12.5% in males, respectively. The frequency of VKORC1 gene (1639 G > A), was 31.5%, 39.5%, and 29% for GG, GA, and AA in males, respectively. Besides, the mentioned genotype frequencies for females were 50%, 40.5%, and 9.5%, respectively. Moreover, there was a statistically significant correlation between VKORC1 gene −1639 G > A variant and warfarin maintenance dose (P < 0.001) but not for CYP2C9 variants. The results of the current study confirmed that the mutant variants of CYP2C9 are not frequent and do not have any impact on warfarin dose. In the case of VKORC1, the mutant allele (A) showed a positive correlation with warfarin dose adjustment.  相似文献   

3.
Dicumarinic oral anticoagulants have a narrow therapeutic range and a great individual variability in response, which makes calculation of the correct dose difficult and critical. Genetic factors involved in this variability include polymorphisms of genes that encode the metabolic enzyme CYP2C9 and the target enzyme vitamin K epoxide reductase complex 1 (VKORC1); these polymorphisms can be associated with reduced enzymatic expression. We examined the frequency of the most relevant variants encoding CYP2C9 (alleles *1, *2 and *3) and VKORC1 (SNP -1639A>G) in the Argentinian population. Molecular typing was performed by PCR-RFLP on a randomly selected sample of 101 healthy volunteers from the Hospital Italiano de Buenos Aires gene bank. Fifty-seven subjects were identified as homozygous for CYP2C9*1 and 14 for *2, while 24 and 5 were heterozygous for *2 and *3 alleles; one individual was a composite heterozygote (*2/*3). When we examined VKORC1, 21 subjects were AA homozygous, 60 were AG heterozygotes and 20 were GG homozygotes. This is the first analysis of genotypic frequencies for CYP2C9 and VKORC1 performed in an Argentinian population. These allele prevalences are similar to what is known for Caucasian population, reflecting the European ancestor of our patient population, coming mostly from Buenos Aires city and surroundings. Knowledge of this prevalence information is instrumental for cost-effective pharmacogenomic testing in patients undergoing oral anticoagulation treatment.  相似文献   

4.
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.  相似文献   

5.
Warfarin is a widely used anticoagulant that has a narrow therapeutic range because of both genetic and environmental factors. CYP2C9( *)2 (p.R144C), CYP2C9( *)3 (p.I359L), and the VKORC1 promoter (g.-1639G-->A) polymorphisms occur frequently in patients who are warfarin "sensitive" and require lower doses, whereas patients with VKORC1 missense mutations are warfarin "resistant" and require higher doses. To compare the CYP2C9 and VKORC1 allele and genotype frequencies among 260 Ashkenazi (AJ) and 80 Sephardi Jewish (SJ) individuals, we genotyped six CYP2C9 and eight VKORC1 alleles by using the Tag-It Mutation Detection Kit and PCR-RFLP assays. The "sensitive"CYP2C9( *)2 and ( *)3 alleles had significantly higher frequencies in SJ than in AJ individuals, 0.194 and 0.144 versus 0.127 and 0.081, respectively (p A, underscoring the importance of screening for p.D36Y prior to initiating warfarin anticoagulation in AJ individuals. Taken together, our findings show that approximately 85% of AJ and approximately 90% of SJ individuals have at least one "sensitive" (CYP2C9( *)2, ( *)3, VKORC1 g.-1639G-->A) or "resistant" (VKORC1 p.D36Y) allele, indicating that each group has different warfarin pharmacogenetics and would benefit from genotype-based dose predictions.  相似文献   

6.
Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.  相似文献   

7.
Cytochrome P450 (CYP) superfamily members CYP2C8 and CYP2C9 are polymorphically expressed enzymes that are involved in the metabolic inactivation of several drugs, including, among others, antiepileptics, NSAIDs, oral hypoglycemics, and anticoagulants. Many of these drugs have a narrow therapeutic index, and growing evidence indicates a prominent role of CYP2C8 and CYP2C9 polymorphisms in the therapeutic efficacy and in the development of adverse effects among patients treated with drugs that are CYP2C8 or CYP2C9 substrates. In this review, we summarize present knowledge on human variability in the frequency of variant CYP2C8 and CYP2C9 alleles. Besides an expected interethnic variability in allele frequencies, a large intraethnic variability exists. Among Asian subjects, for example, statistically significant differences (p < 0.0001) in CYP2C9*3 allele frequencies between Chinese and Japanese individuals have been reported. In addition, individuals from East Asia present different allele frequencies for CYP2C9*2 and CYP2C9*3 compared with South Asian subjects (p < 0.0001). Among Caucasian Europeans, statistically significant differences for the frequency of CYP2C8*3, CYP2C9*2, and CYP2C9*3 exist (p < 0.0001). This indicates that Asian individuals or Caucasian European individuals cannot be considered as homogeneous groups regarding CYP2C8 or CYP2C9 allele frequencies. Caucasian American subjects also show a large variability in allele frequencies, which is likely to be related to ethnic ancestry. A higher frequency of variant CYP2C8 and CYP2C9 alleles is expected among Caucasian Americans with South European ancestry than in individuals with North European ancestry. The findings summarized in this review suggest that among individuals with Asian or European ancestry, intraethnic differences in the risk of developing adverse effects with drugs that are CYP2C8 or CYP2C9 substrates are to be expected. In addition, the observed intraethnic variability reinforces the need for proper selection of control subjects and points against the use of surrogate control groups for studies involving association of CYP2C8 or CYP2C9 alleles with adverse drug reactions or spontaneous diseases.  相似文献   

8.
Allele frequency differences of functional CYP2C9 polymorphisms are responsible for some of the variation in drug response observed in human populations. The most relevant CYP2C9 functional variants are CYP2C9*2 (rs1799853) and CYP2C9*3 (rs1057910). These polymorphisms show variation in allele frequencies among different population groups. The present study aimed to analyze these polymorphisms in 947 Mexican-Mestizo from Mexico City and 483 individuals from five indigenous Mexican populations: Nahua, Teenek, Tarahumara, Purepecha and Huichol. The CYP2C9*2 allele frequencies in the Mestizo, Nahua and Teenek populations were 0.051, 0.007 and 0.005, respectively. As for CYP2C9*3, the allelic frequencies in the Mestizo, Nahua and Teenek populations were 0.04, 0.005 and 0.005, respectively. The CYP2C9*2 and CYP2C9*3 alleles were not observed in the Tarahumara, Purepecha and Huichol populations. These findings are in agreement with previous studies reporting very low allele frequencies for these polymorphisms in American Indigenous populations.  相似文献   

9.
Warfarin doses are greatly affected by polymorphism altering cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) gene. This study evaluated the prevalence of alleles (either single or double) and carriers of single nucleotide polymorphisms (SNPs) in both genotypes CYP2C9 and VKORC1 in alkharj area, Saudi Arabia and its association with warfarin use risk. Total 112 samples were collected and genotyped using FlexiGene DNA Kit for isolation and StepOnePlus Real-Time PCR System by TaqMan allelic discrimination methods. The results indicated the frequency of 11%, 8% and 45% for CYP2C9 *2 *3 and VKORC1-1639 G > A polymorphism. And as a combination genotype it was 15.18% For both CYP2C9 and VKORC1 polymorphism, 27.67% for CYP2C9 and 42.86% for VKORC1. Non-carriers rate came to be at 30.3%. According to previously published dosing changes in warfarin for polymorphism carriers (single-double-triple). The predicted warfarin doses reduction in order of 1–1.6, 2–2.9, 2.9–3.7 mg/day. It was found that 72.3% of the study population was carrier of a type of polymorphism, 15.18% for two types of polymorphisms. These findings predict changes in warfarin metabolism and eventually dosing alteration among patients on warfarin. Both genotypes (CYP2C9 and VKORC1) require different dosing of warfarin than non-carriers in order to minimize the risk of warfarin overdosing and avoidance of the drug-related problems (DRPs).  相似文献   

10.
This study was designed to investigate the potential differences between Spaniards and Ecuadorian Mestizo people regarding CYP2C8, CYP2C9, and CYP2C19 genetic polymorphisms. DNA from 282 Spaniard and 297 Ecuadorian subjects were analyzed by either a previously reported pyrosequencing method (CY2C8*3, CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3) or a nested PCR technique (CYP2C19*17). Whereas CYP2C19*17 allele distribution was higher in Ecuadorians than in Spaniards (P < 0.001) and the frequency of CYP2C19*3 was similar in these two populations (P > 0.05), the other allelic variants were detected at significantly lower frequencies in Ecuadorians than in Spaniards (P < 0.05). According to the diplotype distributions, the prevalence of the presumed CYP2C9 and CYP2C8 extensive metabolizers was higher in Ecuadorians than in Spaniards (P < 0.05). Individuals genotyped CYP2C19*1/*17 and *17/*17 who were considered as ultrarapid metabolizers were overrepresented in Ecuadorians in relation to Spaniards (P < 0.001). By contrast, among Ecuadorians no poor metabolizers (PMs) of either CYP2C8 or CYP2C9 were found and only two individuals were CYP2C19 PMs. These data are compatible with a higher CYP2C8, CYP2C9, and CYP2C19 activity in Mestizo Ecuadorians as opposed to Spaniards, which could imply differences in dosage requirements for drugs metabolized by these cytochromes and should also be considered in allele-disease association studies.  相似文献   

11.
A daily dose of vitamin K antagonists (VKAs) may vary and its range depends on various interrelated factors. Low responsiveness to VKA (defined as a failure to achieve a target international normalized ratio [INR]) is associated with polymorphisms of the vitamin K epoxide reductase-oxidase complex gene (VKORC1). A highly prevalent promoter single-nucleotide polymorphism (VKORC1−1639 G>A, rs 17878363) impairsVKORC1 expression and determines the interindividual variability of the target INR. We studied 57 patients receiving oral anticoagulation, including 50 subjects treated with acenocoumarol (mean dose: 5.7±2.3 mg/day) and 7 treated with warfarin (mean dose: 9.6±4.2 mg/day). The indications for the use of oral anticoagulant therapy were as follows: deep-vein thrombosis (N = 23); pulmonary embolism (N = 20); arterial thrombosis (N = 5); stroke (N = 4); atrial fibrillation with transient ischemic attacks (N = 2), and history of multiple thromboembolic events (N = 3). Identification of theVKORC1 genomic variation was performed using DNA sequencing methods. The prevalence of the mutated allele (VKORC1-1639A) was 41%. TheVKORC1-1639G allele carriers required a higher daily dose of acenocoumarol (5.9±1.9 mg) than the noncarriers (4.1±3.3 mg;P < 0.001). All of 5 low responders (who failed to achieve a target INR using standard dose requirements of VKAs) were homozygous for the 1639G allele. Low responders did not differ from good responders with respect to age, gender, and body mass index. Our findings suggest the potential benefits from pharmacogenetic testing, and provide evidence that theVKORC1 −1639 G>A gene polymorphism may explain at least in part the low responsiveness to acenocoumarol.  相似文献   

12.

Background and Aim

Warfarin is the most frequently prescribed anticoagulant worldwide. However, warfarin therapy is associated with a high risk of bleeding and thromboembolic events because of a large interindividual dose-response variability. We investigated the effect of genetic and non genetic factors on warfarin dosage in a South Italian population in the attempt to setup an algorithm easily applicable in the clinical practice.

Materials and Methods

A total of 266 patients from Southern Italy affected by cardiovascular diseases were enrolled and their clinical and anamnestic data recorded. All patients were genotyped for CYP2C9*2,*3, CYP4F2*3, VKORC1 -1639 G>A by the TaqMan assay and for variants VKORC1 1173 C>T and VKORC1 3730 G>A by denaturing high performance liquid chromatography and direct sequencing. The effect of genetic and not genetic factors on warfarin dose variability was tested by multiple linear regression analysis, and an algorithm based on our data was established and then validated by the Jackknife procedure.

Results

Warfarin dose variability was influenced, in decreasing order, by VKORC1-1639 G>A (29.7%), CYP2C9*3 (11.8%), age (8.5%), CYP2C9*2 (3.5%), gender (2.0%) and lastly CYP4F2*3 (1.7%); VKORC1 1173 C>T and VKORC1 3730 G>A exerted a slight effect (<1% each). Taken together, these factors accounted for 58.4% of the warfarin dose variability in our population. Data obtained with our algorithm significantly correlated with those predicted by the two online algorithms: Warfarin dosing and Pharmgkb (p<0.001; R2 = 0.805 and p<0.001; R2 = 0.773, respectively).

Conclusions

Our algorithm, which is based on six polymorphisms, age and gender, is user-friendly and its application in clinical practice could improve the personalized management of patients undergoing warfarin therapy.  相似文献   

13.
CYP2C9 is a genetically polymorphic human cytochrome P450 isozyme involved in the oxidative metabolism of many drugs, including nonsteroidal anti-inflammatory compounds. Individuals genotyped heterozygous or homozygous for CYP2C9 allelic variants have demonstrated altered metabolism of some drugs primarily metabolized by CYP2C9. The ability to expand screening of CYP2C9 allelic variants to a larger set of drugs and pharmaceutical agents would contribute to a better understanding of the significance of CYP2C9 polymorphisms in the population and to predictions of possible outcomes. The authors report the development of an in vitro fluorescence-based assay employing recombinant CYP2C9 variants (CYP2C9*1, CYP2C9*2, and CYP2C9*3) and fluorogenic Vivid(R) CYP2C9 substrates to explore the effects of CYP2C9 polymorphisms on drug metabolism, using drugs primarily metabolized by CYP2C9. Several chemically diverse fluorogenic substrates (Vivid(R) CYP2C9 blue, green, and red substrates) were used as prototypic probes to obtain in vitro CYP2C9 metabolic rates and kinetic parameters, such as apparent K(m), V(max), and V(max)/K(m) ratios for each allelic variant. In addition, a diverse panel of drugs was screened as assay modifiers with CYP2C9*1, CYP2C9*2, CYP2C9*3, and the fluorogenic Vivid(R) CYP2C9 substrates. The inhibitory potential of this large group of chemically diverse drugs and compounds has been assessed on the basis of their ability to compete with Vivid(R) CYP2C9 substrates in fluorescent reporter assays, thus providing a sensitive and quick assessment of polymorphism-dependent changes in CYP2C9 metabolism.  相似文献   

14.

Background

In recent years reduced bone mineral density (BMD) and osteoporosis have become major public health problems. Single nucleotide polymorphisms (SNPs) in the cytochrome P450 2C9 (CYP2C9) gene influence the response to oral anticoagulant drugs, which are positively associated with the risk to develop osteoporosis. The aim of the present investigation was to clarify a potential role of CYP2C9 sequence variations and susceptibility to develop osteoporosis.

Subjects and methods

Ninety two consecutive angiologic outpatients, mean age: 60.3 ± 14.4, without secondary causes of bone loss were genotyped and classified as patients with normal BMD, osteopenia and osteoporosis according to WHO criteria by dual-energy X-ray absorptiometry at the lumbar spine and/or the femoral neck. Potential association between the CYP2C9 genotype and BMD was tested.

Results

59% of the patients (n = 54) presented with reduced BMD and were compared to 38 age-matched persons with normal BMD. The genotype distribution showed 15% heterozygous for CYP2C9*2 p.Arg144Cys, 14% for CYP2C9*3 p.IIe359Leu, 2% for both polymorphisms, and 69% had wildtype genotypes. Patients with CYP2C9 mutations had significantly lower BMD values at the femoral neck and displayed a four-fold higher adjusted risk to suffer from reduced BMD than individuals with wildtype genotypes (p = 0.02).

Discussion

Oral anticoagulant treatment is common in angiologic outpatients. The gene variants CYP2C9*2 and CYP2C9*3 have been shown to require lower maintenance doses of oral anticoagulant drugs. An association between oral anticoagulant drugs and the susceptibility to develop osteoporosis in relation to sequence variations in the CYP2C9 gene is suggested to be mediated via the glucocorticoid synthesis pathway.

Conclusion

The CYP2C9*2/CYP2C9*3 variants were significantly associated with femoral BMD in a selected elderly Austrian population. These variants could contribute to the complex risk to develop osteoporosis.  相似文献   

15.
《Endocrine practice》2013,19(6):1043-1049
ObjectiveTo review the literature regarding the interaction among amiodarone therapy, thyroid hormone levels, and warfarin metabolism.Methods73-year-old male with type 2 after describing an unusual case of amiodarone-induced thyrotoxicosis (AIT) who experienced a severe rise in international normalized ratio (INR) values after initiating warfarin therapy due to an unusual combination of excessive thyroid hormones, amiodarone therapy, and a genetic abnormality affecting warfarin metabolism.ResultsGenetic analysis revealed that the patient was CYP2C9*2 wild-type, CYP2C9*3/*3 homozygous mutant, and VKORC1*3/*3 homozygous mutant. A review of the literature revealed that both mutations can independently affect warfarin metabolism. In addition, amiodarone therapy and the presence of thyrotoxicosis per se can affect warfarin metabolism and reduce the dose needed to maintain INR in the therapeutic range. The association of the 2 genetic polymorphisms in a patient with AIT is extremely rare and strongly impairs warfarin metabolism, exposing the patient to a high risk of overtreatment.ConclusionsIn patients with AIT, warfarin therapy should be gradually introduced, starting with a very low dose, because of the significant risk of warfarin overtreatment. Whether the genetic analysis of CYP2C9 and VKORC1 polymorphisms should be routinely performed in AIT patients remains conjectural. (Endocr Pract. 2013; 19:1043-1049)  相似文献   

16.
Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms   总被引:9,自引:0,他引:9  
Cytochrome P450 (CYP) 2C8 and 2C9 are polymorphic enzymes. The CYP2C8*3 and CYP2C9*2 are the major variant alleles in Caucasian populations. The enzymes encoded by these variant alleles have impaired function for the metabolism of several drug substrates. In the present study 1468 subjects that were used as population-based controls in the Stockholm Heart Epidemiology Program (SHEEP) were genotyped by allelic discrimination using a 5'-nuclease assay for CYP2C8*1, 2C8*3, 2C9*1, 2C9*2, and 2C9*3 variant alleles in which the frequencies appeared to be 0.91, 0.095, 0.83, 0.11, and 0.066, respectively. Approximately, 96% of the subjects with CYP2C8*3 allele also carried a CYP2C9*2 and 85% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. The number of subjects carrying both of the CYP2C8*1*3 and CYP2C9*1*2 was 4.5-fold higher than expected. This strong association may be of importance especially for the metabolism of common substrates of CYP2C8 and CYP2C9 like arachidonic acid that produces physiologically active metabolites.  相似文献   

17.
CYP2C9 is a major P450 2C enzyme, which hydroxylates about 16% of drugs that are in current clinical use and contributes to the metabolism of a number of clinically important substrate drugs such as warfarin. Ethnic differences in the genetic variation of CYP2C9 have been reported, and might be related to the frequencies of adverse reactions to drugs metabolized by CYP2C9 in different ethnic groups. In the present study, ethnic differences in the CYP2C9*2 and CYP2C9*3 allele distribution in Japanese and Israeli populations were evaluated using a newly developed oligonucleotide based DNA array (OligoArray(R)). The population studied consisted of 147 Japanese and 388 Israeli donors (100 Ashkenazi Jews, 99 Yemenite Jews, 100 Moroccan Jews and 89 Libyan Jews). The CYP2C9*2 [Arg144Cys (416 C>T), exon 3] and CYP2C9*3 [Ile359Leu (1061 A>C), exon 7] genotypes were determined using an OligoArray(R). The accuracy of genotyping by the OligoArray(R) was verified by the fluorescent dye-terminator cycle sequencing method. A Hardy-Weinberg test indicated equilibrium (chi(2)<3.84 is Hardy-Weinberg) in all populations. The CYP2C9*2 genotype (CC/CT+TT) was absent in Japanese (1/0) (OR 0.02), and its frequency was significant in Libyan Jews (0.697/0.303) (OR 2.13; 95% CI 1.07-4.24) compared with Ashkenazi Jews (0.83/0.17), Yemenite Jews (0.899/0.101), and Moroccan Jews (0.81/0.19). The frequencies of CYP2C9*3 genotype (AA/AC+CC) was significantly lower in Japanese (0.986/0.014) (OR 0.08), and was higher in Libyan Jews (0.652/0.348) (OR 3.03; 95% CI 1.5-6.1) and Moroccan Jews (0.77/0.23) (OR 1.69; 95% CI 0.62-3.48) compared with those in Ashkenazi Jews (0.85/0.15) and Yemenite Jews (0.849/0.151). Thus, the CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) variants were rare in the Japanese population, and showed different frequencies in the four Jewish ethnic groups examined.  相似文献   

18.
Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4′-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61 pmol/min/mg) level. Derived from V max/K m, the CLint value of CYP2C19 WT was 785 folds of CYP2C19*23. K m and V max values could not be determined for CYP2C19*24 due to its low catalytic activity towards omeprazole 5′-hydroxylation. Therefore, both CYP2C19*23 and CYP2C19*24 showed marked reduced activities of metabolising omeprazole to 5-hydroxyomeprazole. Hence, carriers of CYP2C19*23 and CYP2C19*24 allele are potentially poor metabolisers of CYP2C19-mediated substrates.  相似文献   

19.
Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.  相似文献   

20.
To relate the pharmacokinetics of orally administered lansoprazole in healthy adult Jordanian men with CYP2C19 polymorphisms and to determine the percentage of CYP2C19 polymorphism in Jordanian population and the allelic frequency of CYP2C19*2 and CYP2C19*3. A total of 78 healthy Jordanian volunteers were included in this study from three different bioequivalence studies, one of these studies which included 26 volunteers was done on lansoprazole. Genotyping for CYP2C19*1, CYP2C19*2, CYP2C19*3 was done for all 78 volunteers, the data of genotyping of all subjects used for screening the frequency of different genotypes and the allelic frequency of different polymorphisms in healthy Jordanian men, the pharmacokinetics and genotyping data for the study of lansoprazole was matched and compared to investigate presence of statistical differences in pharmacokinetic parameters. In Jordanian subjects, the allele frequencies of the CYP2C19*2 and CYP2C19*3 mutation were 0.16 and 0, respectively. The concentration–time curves in the two groups [homozygote extensive metabolizer (homEM, n = 19) and heterozygote extensive metabolizer (homEM, n = 7)] groups were fitted to a non-compartment model. In the homEM and in the hetEM groups, the main kinetic parameters were as follows: Tmax (2.1875 ± 0.777) and (2.54 ± 1.87) h, Cmax (697.875 ± 335) and (833.58 ± 436.26) mg/l, t1/2 (1.3 ± 0.43) and (2.38 ± 1.64) h, AUC(0→∞) were (1,684.9 ± 888) and (3,609.8 ± 318) mg h l−1, respectively. The Jordanian population showed similarities in CYP2C19 allele and genotype distribution pattern with Caucasians and Africans. CYP2C19 allele and poor metabolizer (PM) genotype frequencies in the Jordanian population are distinct from populations’ from East Asia such as Japanese and Koreans. Although lower pharmacokinetic parameters were found in homEM compared to hetEM but there was no significant difference between the two groups (P < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号