首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Glucosides and 3,5-diglucosides of pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin have been identified as flower pigments in Fuchsia species. These pigments in varying admixture appear to be solely responsible for different flower colours in this genus. Their production and inheritance seems to be under a complex system of genetic control.  相似文献   

2.
From the blue perianth segments of Cichorium intybus we isolated four anthocyanins. The pigments were identified as delphinidin 3,5-di-O-(6-O-malonyl-beta-D-glucoside) and delphinidin 3-O-(6-O-malonyl-beta-D-glucoside)-5-O-beta-D-glucoside and the known compounds were delphinidin 3-O-beta-D-glucoside-5-O-(6-O-malonyl-beta-D-glucoside) and delphinidin 3,5-di-O-beta-D-glucoside. In addition 3-O-p-coumaroyl quinic acid has been identified.  相似文献   

3.
Anthocyanin pigments in Callistephus chinensis   总被引:1,自引:0,他引:1  
Identification of the anthocyanin pigments in the flowers of six genotypes of Callistephus chinensis has confirmed that a series of multiple alleles, R, r′ and r are responsible for the production of delphinidin, cyanidin, and pelargonidin derivatives respectively. However, mixtures of anthocyanidin types were present in all genotypes. In the presence of gene M, mainly 3,5-diglycosides were found; in recessive genotypes (mm) there were only 3-mono-glucosides. Unstable acylated derivatives of these pigments were also present.  相似文献   

4.
Several 3,5-diiodotryrosyl derivatives have been synthesized by both sodium iodideiodine and the sodium iodide-iodic acid methods. Conditions optimizing yield and purity of the product have been established for the latter reaction. Under those conditions, treatment of N-acetyl-tyrosyl ethyl ester with sodium [125I]iodide and iodic acid gave N-acetyl-3,5-di[125I]iodotyrosyl ethyl ester (ADITEE) with high specific activity. Hydrazination of [125I]ADITEE produces N-acetyl-3,5-di[125I]iodotyrosyl hydrazide. This hydrazide has been successfully used to modify four different ribonucleoside dialdehydes.  相似文献   

5.
Iodinated X-ray contrast agents are considered to be nondegradable by microorganisms. The decomposition of the ionic X-ray contrast agents Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoic acid) and Iodipamide (3,3′-adipoyl-diimino-di(2,4,6-triiodobenzoic acid) and related triiodinated benzoates (Acetrizoate [3-acetylamino-2,4,6-triiodobenzoic acid] and Aminotrizoate [3-amino-2,4,6-triiodobenzoic acid]) by Trametes versicolor has been investigated. The fungus was able to transform all tested triiodinated benzoates cometabolically. During transformation of these compounds, iodide was released, but deiodination was not complete. T. versicolor liberated traces of 14CO2 from uniformly ring-14C-labeled Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoate). Various extracellular metabolites were detected during transformation of the different substances. In the transformation of Diatrizoate, the three main metabolites were identified as 3,5-di(acetamido)-2,6-diiodobenzoic acid, 3,5-di(acetamido)-2,4-diiodobenzoic acid, and 3,5-di(acetamido)-2-iodobenzoic acid, suggesting reductive deiodinations in steps as initial transformation steps.  相似文献   

6.
A new dibromophenol has been isolated from the acidified ethanolic extracts of the red alga Halopitys incurvus, and is shown to be 2,6-dibromo-3,5-dihydroxyphenylacetic acid, probably derived from a disulfate dipotassium salt.  相似文献   

7.
Three cyanidin glycosides have been identified in the black carrot: the known 3-lathyroside and two new pigments, a 3-xylosylglucosylgalactoside and its ferulyl derivative. The same pigments, together with the sinapyl derivative of the triglycoside, occur variously in other tissues of Daucus carota. Ferulyl and sinapyl derivatives of cyanidin 3-glucosylgalactoside occur exceptionally in stem of one subspecies, maritimus. One or other of the same pigments have been found to occur variously in 20 of 22 other umbellifer species surveyed. Both ferulyl and sinapyl derivatives occur in stem of Conium maculatum and Foeniculum vulgare. A further novel acylated pigment based on p-coumaric acid was found in wild celery, Apiurn graveolens. The systematic significance of these various findings is discussed.  相似文献   

8.
Several halogenated tyrosines have been identified in acid hydrolysates of Limulus polyphemus (L.) cuticle: 3-chlorotyrosine, 3-bromotyrosine, 3,5-dichlorotyrosine, 3-chloro-5-bromotyrosine and 3,5-dibromotyrosine. Tryptophan could be isolated from the cuticle when it was hydrolyzed under basic conditions.  相似文献   

9.
One sesquiterpene lactone – 9α-hydroxy-3-deoxyzaluzanin C, three benzopyrans: desmethoxyencecalin (6-acetyl-2,2-dimethylchromene), desacetylripariochromen B and 6-(1-hydroxyethyl)-2,2-dimethylchromene, one coumarin – scopoletin and two eugenol derivatives were isolated from the roots of Tolpis barbata (L.) Gaertn, hitherto unexamined species. In the extract from aerial parts of the plant, five known phenolic compounds, namely: esculin, esculetin, chlorogenic acid (5-CQA), luteolin 7-O-glucoside and 3,5-dicaffeoylquinic acid (3,5-DCQA) were identified as major constituents. Except for the two coumarins – scopoletin and esculetin, which were previously obtained from Tolpis webbii Sch.Bip. and T. proustii Pit., the isolated and identified compounds have not been previously reported as constituents of Tolpis spp. Though benzopyrans were found in numerous species of the Asteraceae, their occurrence in the tribe Cichorieae has not been demonstrated before.  相似文献   

10.
Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl–acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring.  相似文献   

11.
Novel amide derivatives of trolox, 3,5-di-tert-butyl-4-hydroxybenzoic acid, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid and cinnamic acid with cysteamine and l-cysteine ethyl ester were synthesised. In four cases, the disulfide derivatives were also isolated and tested. All compounds were examined for antioxidant activity, expressed as their ability to inhibit lipid peroxidation and to scavenge free radicals. They were found to demonstrate up to 17-fold better activity than that of the parent antioxidant acids. They could reduce acute inflammation up to 87%. The most active antioxidant compounds were further tested for their in vivo hypolipidemic effect, which ranged from 47% to 73%, and for their ability to protect the liver against oxidative toxicity caused by high paracetamol dose. The disulfide derivatives of 3,5-di-tert-butyl-4-hydroxybenzoic acid and cinnamic acid had no antioxidant activity and presented equal or lower anti-inflammatory effect than their thiol analogues, indicating that their molecular characteristics may not permit biological barrier penetration.  相似文献   

12.
Yarrowia lipolytica produces brown extracellular pigments that correlate with tyrosine catabolism. During tyrosine depletion, the yeast accumulated homogentisic acid, p-hydroxyphenylethanol, and p-hydroxyphenylacetic acid in the medium. Homogentisic acid accumulated under all aeration conditions tested, but its concentration decreased as aeration decreased. With moderate aeration, equimolar concentrations of alcohol and p-hydroxyphenylacetic acid (1:1) were detected, but with lower aeration the alcohol concentration was twice that of the acid (2:1). p-Hydroxyphenylethanol and p-hydroxyphenylacetic acid may result from the spontaneous disproportionation of the corresponding aldehyde, p-hydroxyphenylacetaldehyde. The catabolic pathway of tyrosine in Y. lipolytica involves the formation of p-hydroxyphenylacetaldehyde, which is oxidized to p-hydroxyphenylacetic acid and then further oxidized to homogentisic acid. Brown pigments are produced when homogentisic acid accumulates in the medium. This acid can spontaneously oxidize and polymerize, leading to the formation of pyomelanins. Mn2+ accelerated and intensified the oxidative polymerization of homogentisic acid, and lactic acid enhanced the stimulating role of Mn2+. Alkaline conditions also accelerated pigment formation. The proposed tyrosine catabolism pathway appears to be unique for yeast, and this is the first report of a yeast producing pigments involving homogentisic acid.  相似文献   

13.
Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG–1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442  相似文献   

14.
Betalains are the nitrogenous pigments that replace anthocyanins in the plant order Caryophyllales. Here, we describe unconventional decarboxylated betalains in quinoa (Chenopodium quinoa) grains. Decarboxylated betalains are derived from a previously unconsidered activity of the 4,5-DOPA-extradiol-dioxygenase enzyme (DODA), which has been identified as the key enzymatic step in the established biosynthetic pathway of betalains. Here, dopamine is fully characterized as an alternative substrate of the DODA enzyme able to yield an intermediate and structural unit of plant pigments: 6-decarboxy-betalamic acid, which is proposed and described. To characterize this activity, quinoa grains of different colors were analyzed in depth by chromatography, time-of-flight mass spectrometry, and reactions were performed in enzymatic assays and bioreactors. The enzymatic-chemical scheme proposed leads to an uncharacterized family of 6-decarboxylated betalains produced by a hitherto unknown enzymatic activity. All intermediate compounds as well as the final products of the dopamine-based biosynthetic pathway of pigments have been unambiguously determined and the reactions have been characterized from the enzymatic and functional perspectives. Results evidence a palette of molecules in quinoa grains of physiological relevance and which explain minor betalains described in plants of the Caryophyllales order. An entire family of betalains is anticipated.

A biosynthetic pathway produces unconventional plant pigments betalains derived from dopamine in quinoa.  相似文献   

15.
Golenkinia, Chlorella protothecoides, and mutant C-2A′ of Scenedesmus were grown in darkness and on media in which chlorophyll synthesis is reduced significantly. The pigments were analyzed by spectrophotometry or by paper chromatography and compared with similar extracts from light-grown algae and dark-grown beans. No protochlorophyll(ide) was present in the dark-grown algae indicating that chlorophyll synthesis is blocked by a mechanism other than feedback regulation of aminolevulinic acid synthesis by protochlorophyll(ide) which has been proposed for flowering plants.  相似文献   

16.
《Phytochemistry》1987,26(8):2357-2360
Three compounds, an acid and two glycosidic acids, derived from the acyl moieties of quillajasaponin were obtained from the alkaline hydrolysate of the saponin mixture. On the basis of chemical and spectral evidence, they were identified as 3,5-dihydroxy-6-methyl-octanoic acid, 3,5-dihydroxy-6-methyl-octanoic acid 5-O-α-L-arabinofuranoside and 5-O-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinofuranoside. The first compound was, in fact, isolated and characterized as its lactone form. FDMS was useful in providing information on theM, of the unique acid and glycosidic acids.  相似文献   

17.
The synthesis and inhibitory potencies of a novel series of 3,5-diaryl-1H-pyrazoles as specific inhibitors of prokaryotic arylamine N-acetyltransferase enzymes is described. The series is based on hit compound 1 3,5-diaryl-1H-pyrazole identified from a high-throughout screen that has been carried out previously and found to inhibit the growth of Mycobacterium tuberculosis.  相似文献   

18.
This study investigated the biochemical suitability of Australian native microalgal species Scenedesmus sp., Nannochloropsis sp., Dunaliella sp., and a chlorophytic polyculture as nutritional supplements for human health. The four microalgal cultures were harvested during exponential growth, lyophilized, and analysed for proximate composition (moisture, ash, lipid, carbohydrates, and protein), pigments, and amino acid and fatty acid profiles. The resulting nutritional value, based on biochemical composition, was compared to commercial Spirulina and Chlorella products. The Australian native microalgae exhibited similar, and in several cases superior, organic nutritional properties relative to the assessed commercial products, with biochemical profiles rich in high-quality protein, nutritious polyunsaturated fats (such as α-linolenic acid, arachidonic acid, and eicosapentaenoic acid), and antioxidant pigments. These findings indicate that the microalgae assessed have great potential as multi-nutrient human health supplements.  相似文献   

19.
Various stresses, including exposure to cold or heat, can result in a sharp increase in pigmentation of sea urchin embryos and larvae. The differentiation of pigment cells is accompanied by active expression of genes involved in the biosynthesis of naphthoquinone pigments and appears to be a part of the defense system protecting sea urchins against harmful factors. To clarify numerous issues occurring at various time points after the cold injury, we studied the effect of shikimic acid, a precursor of naphthoquinone pigments, on cell viability and expression of some pigment genes such as the pks and sult before and after freezing the cultures of sea urchin embryo cells. The maximum level of the pks gene expression after a freezing–thawing cycle was found when sea urchin cells were frozen in the presence of trehalose alone. Despite naphthoquinone pigments have been reported to possess antioxidant and cryoprotectant properties, our data suggest that shikimic acid does not have any additional cryoprotective effect on freezing tolerance of sea urchin embryo pigment cells.  相似文献   

20.
A thin-layer chromatographic method for the separation and identification of leaf pigments and their degradation products on commercial silica gel layer has been developed to give a tool to examine the purity of chlorophyll preparations and the chemical stability of chlorophyll molecules during the course of the chlorophyll preparation. It has been confirmed that the developing solvent system (isopentane:tert-butyl alcohol:acetone = 90:5:5, v/v/v) is quite useful to separate the photosynthetic pigments and their degradation products which were commonly found during the course of in vitro chlorophyll studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号