首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In their native range, mammalian herbivores exist in a suite of direct and indirect ecological and evolutionary relationships with plant populations and communities. Outside their native range these herbivores become embedded in a multitude of new ecological and evolutionary interactions with native plant species in the new range. Sound knowledge of the plant/herbivore interactions in the herbivores’ native range provides an ideal framework to better understand their effects in the introduced range. The example of the common brushtail possum (Trichosurus vulpecula) and its introduction to New Zealand from Australia provides an excellent case study. In Australia, the common brushtail possum is a widespread generalist herbivore and it is thought that this generalist lifestyle has equipped the species well for successful colonisation of New Zealand. In Australia the brushtail possum has co-existed with highly chemically defended foliage since the Oligocene and recent papers have supported the role of possums as agents of selection on eucalypt defences. While the chemical profile of New Zealand foliage is comparatively poorly understood, possums do show clear selectivity between and within populations and some of these interactions may be mediated by the animals ability to ‘cope’ with PSMs, coupled with maintaining its generalist diet. While possums have had less time to effect evolutionary change in New Zealand species, their impacts on plant fitness have been well documented. However, further knowledge on variation and heritability of foliage traits driving possum preferences is needed to elucidate the ecological and evolutionary plant/possum interactions in the invasive range.  相似文献   

2.
The evolution of plant defensive traits in response to selection pressures imposed by herbivores is central to co-evolutionary theory. To demonstrate the role of herbivores as selective agents on plant resistance there must be variability in plant resistance to herbivores within a plant population. This variability must be under genetic control, and the variability in plant resistant traits and consequently herbivore damage to plants must reflect variability in plant fitness. We used a common eucalypt species, Eucalyptus globulus, and two major mammalian herbivores, the common brushtail possum (Trichosurus vulpecula) and the red-bellied pademelon (Thylogale billardierii), as a system to investigate intraspecific variation in plant resistance to mammalian herbivores and to investigate if this variation has a genetic basis. We measured mammalian browsing damage on 2,302 individual trees of E. globulus, from 563 families derived from range-wide native stand seed collections of known pedigree and grown in a common environment field trial. Using a selection of trees from the field trial we then conducted a feeding trial with captive herbivores to assess if the genetic variation in plant resistance in the field was reflected in feeding preferences of captive animals, as measured by relative intake. Results from the field trial showed significant genetic variation in plant resistance amongst races, localities and amongst different families. These results were consolidated in the captive trial with similar trends in genetic variation among E. globulus localities. Dry matter intake of foliage by Trichosurus vulpecula was consistently greater than that by Thylogale billardierii; however, the intraspecific preferences of the two herbivores were significantly correlated.  相似文献   

3.
Plant‐mediated indirect effects can be important ecological drivers in plant communities, especially in systems where extended genetic effects of foundation species can shape communities and influence ecosystem dynamics. Here we investigate the direct and indirect effects of uncontrolled browsing by marsupial herbivores including the common brushtail possum Trichosurus vulpecula, Bennetts wallaby Macropus rufogriseus and the red‐bellied pademelon Thylogale billardierii, in a Eucalyptus system known to have extended community and ecosystem genetic effects. In a common garden trial containing 525 full‐sib families from an incomplete diallel crossing program located in northeastern Tasmania, Australia, we assessed the genetic basis to herbivore preferences, the impact of a single and repeated marsupial browsing event on tree fitness and morphological traits and the associated indirect plant‐mediated effects on a subsequent herbivore, autumn gum moth Mnesampela privata. Marsupial browsing was not influenced by plant genetics, but spatial components instead affected the pattern of damage across the trial. Marsupial browsing had significant impacts on tree development, morphology and survival, resulting in reductions in survival, height and basal area, an increase proportion in multiple stems, delays in flowering as well as delays in phase change from juvenile to adult foliage. Fitness impacts were minimal in response to a once‐off browsing event, but effects were exacerbated when trees suffered repeated browsing. We demonstrate clear plant‐mediated indirect effects of marsupial browsing on subsequent tree use by an invertebrate herbivore, through induced changes in plant morphology. Such indirect effects have the potential to influence biotic community structure on a foundation species host‐plant, and the evolutionary interactions that occur between organisms and the host‐plant themselves.  相似文献   

4.
Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.  相似文献   

5.
Qiang Yang  Bo Li  Evan Siemann 《Oikos》2015,124(2):216-224
Exotic plant species may exhibit abiotic niche expansions that enable them to persist in a greater variety of habitat types in their introduced ranges than in their native ranges. This may reflect variation in limitation by different abiotic niche dimensions (realized niche shift) or phenotypic effects of biotic interactions that vary among ranges (realized niche expansion). Novel abiotic and biotic environments in the introduced range may also lead to genetic changes in exotic plant traits that enhance their abiotic stress tolerance (fundamental niche expansion). Here, we investigated how biotic interactions (aboveground herbivory and soil organisms) affect plant salinity tolerance using the invasive species Triadica sebifera from China (native range) and US (introduced range) populations grown in common gardens in both ranges. Simulated herbivory significantly reduced survival in saline treatments with reductions especially large at low salinity. Soil sterilization had a negative effect on survival at low salinity in China but had a positive effect on survival at low salinity in the US. Triadica survival and biomass were higher for US populations than for China populations, particularly in China but salinity tolerance did not depend on population origin. On average, arbuscular mycorrhizal (AM) colonization was higher for US populations, US soils and low salinity. These factors had a significant, positive, non‐additive interaction so that clipped seedlings from US populations in low saline US soils had high levels of AM colonization. Overall, our results show that phenotypic biotic interactions shape Triadica's salinity tolerance. Positive and negative biotic interactions together affected plant performance at intermediate stress levels. However, only aboveground damage consistently affected salinity tolerance, suggesting an important role for enemy release in expanding stress tolerance.  相似文献   

6.
A long‐standing paradigm in ecology holds that herbivore pressure and thus plant defences increase towards lower latitudes. However, recent work has challenged this prediction where studies have found no relationship or opposite trends where herbivory or plant defences increase at higher latitudes. Here we tested for latitudinal variation in herbivory, chemical defences (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of a long‐lived tree species, the English oak Quercus robur. We further investigated the underlying climatic and soil factors associated with such variation. Across 38 populations of Q. robur distributed along an 18° latitudinal gradient, covering almost the entire latitudinal and climatic range of this species, we observed strong but divergent latitudinal gradients in leaf herbivory and leaf chemical defences and nutrients. As expected, there was a negative relationship between latitude and leaf herbivory where oak populations from lower latitudes exhibited higher levels of leaf herbivory. However, counter to predictions there was a positive relationship between leaf chemical defences and latitude where populations at higher latitudes were better defended. Similarly, leaf phosphorus and nitrogen increased with latitude. Path analysis indicated a significant (negative) effect of plant chemical defences (condensed tannins) on leaf herbivory, suggesting that the latitudinal gradient in leaf herbivory was driven by an inverse gradient in defensive investment. Leaf nutrients had no independent influence on herbivory. Further, we found significant indirect effects of precipitation and soil porosity on leaf herbivory, which were mediated by plant chemical defences. These findings suggest that abiotic factors shape latitudinal variation in plant defences and that these defences in turn underlie latitudinal variation in leaf herbivory. Overall, this study contributes to a better understanding of latitudinal variation in plant–herbivore interactions by determining the identity and modus operandi of abiotic factors concurrently shaping plant defences and herbivory.  相似文献   

7.
The koala is the quintessential specialist herbivore, feeding almost exclusively on Eucalyptus foliage. Consequently, the limitations imposed on the koala's diet by plant defences indicate the extent to which evolutionary adaptations allow mammalian herbivores to circumvent such defences. We tested whether a recently discovered group of plant secondary metabolites, the formylated phloroglucinol compounds (FPCs), deters koalas from feeding on some eucalypt foliage. We found that captive koalas ate less foliage in a single night from trees with high FPC concentrations. Individual trees also differ in the types of FPC they possess, but for a given eucalypt species, most FPCs were similarly effective deterrents. Two closely related and sympatric eucalypt species could be clearly separated by the amounts that koalas ate from each; however, this difference could not be explained by total FPC concentrations alone. We suggest, that in this case, the presence of a distinct type of FPC deters koala herbivory on the less palatable species, and may have facilitated the evolutionary divergence of these species. We conclude that plant defences probably play an important role in determining the distribution and abundance of koalas.  相似文献   

8.
Although biotic interactions are particularly intricate in the tropics, few studies have examined whether divergent adaptations to biotic interactions lead to speciation in tropical organisms. Ant-plant mutualisms are widespread in the tropics. Within Leonardoxa africana, two subspecies present contrasting defences against herbivores. Young leaves of subsp. africana are defended by mutualistic ants, whereas subsp. gracilicaulis satiates herbivores by synchronized leaf production. Subsp. africana possesses hollow internodes and many large foliar nectaries, housing and feeding ants. We detected no genetic introgression between the two subspecies in the contact zone between them. F1 hybrids were present. They were intermediate in phenotype, expressing reduced, nonfunctional but costly myrmecophilic traits. However, they suffered more herbivory than their parents. Hybrids remained small, failing to reach reproductive size, probably due to their maladapted defence phenotype. Hence, there could be a direct link between adaptation to mutualism and reproductive isolation: biotic interactions could be a driver of tropical diversity.  相似文献   

9.
Body size is often associated with a dietary divergence within taxonomically related groups so that large animals are often folivorous, while smaller species shift progressively towards omnivory or carnivory. This trend may be influenced by allometric constrains which result in relatively high energetic requirements, but low gut capacities in small animals, compared to their large counterparts. The common brushtail possum (Trichosurus vulpecula, Phalangeridae) has six subspecies ranging widely in weight (1–4 kg). They are not strictly folivorous, but supplement their diet with more nutritious, non‐foliar foods. We predicted that T. vulpecula subspecies diverged in diet in association with body size, with smaller subspecies consuming higher proportions of non‐foliar foods. We assessed this with a review and a meta‐analysis of previous Australian studies. We also investigated the previously unquantified diet of T. v. hypoleucus at three sites in the northern jarrah forest of Western Australia. Results from the meta‐analysis and the review supported our prediction. However, the large variability in the data highlighted their limitations and those of the techniques commonly used to quantify the diet of T. vulpecula. Nonetheless, small subspecies of T. vulpecula appear to consume higher proportions of non‐foliar foods. These results should encourage further research into the body size/diet relationship within T. vulpecula and other possum species. Results from the dietary study of T. v. hypoleucus emphasized their omnivorous diet, which was dominated by foliage and flowers and smaller proportions of invertebrates, seeds and fruits. The common brushtail possum is seldom an exclusive arboreal folivore, but rather ranges from folivory to omnivory.  相似文献   

10.
Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO2 emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO2 emissions, changes in leaf chewer damage were not associated with either leaf traits or CO2 levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.  相似文献   

11.
Both theoretical and empirical works have highlighted the difference in the evolutionary implications of host resistance and tolerance against their enemies. However, it has been difficult to show evolutionary changes in host defences in natural populations; thus, evaluating theoretical predictions of simultaneous evolution of defences remains a challenge. We studied the evolutionary changes in traits related to resistance and tolerance against herbivory in a natural plant population using seeds from two collections made in a period of 20 years. In a common garden experiment, we compared defensive traits of ancestral (1987) and descendant (2007) subpopulations of the annual plant Datura stramonium that shows genetic variation for tolerance and to which the specialist herbivore Lema daturaphila is locally adapted. We also examined the effects of different plant genotypes on the herbivore for testing the plant genetic variation in resistance. Based on the response to the contemporary herbivore populations, results revealed a nonsignificant response in plant resistance traits (herbivore consumption, foliar trichomes and tropane alkaloids), but a significant one in tolerance. The survival of herbivores in laboratory experiments depended on the plant genotype, which suggests genetic variation in plant resistance. Although we cannot identify the selective agent for the change nor exclude genetic drift, the results are consistent with the expectation that when resistance fails to control herbivory, tolerance should play a more important role in the evolution of the interaction.  相似文献   

12.
1. Leaves possess traits that mediate the preference and performance of herbivores. Most evidence for the importance of leaf traits as defences against herbivory comes from studies of few model plant species. 2. In a phylogenetically explicit comparison, I explain the differences in preference and performance of tussock moth (Orgyia vetusta Boisduval) larvae on leaves of 27 oak (Quercus) species using nine putative leaf defences. 3. The preference for an oak species correlated positively with the survival of caterpillars. The correlation between preference and performance did not differ between oak species native to the range of tussock moth versus those from outside the herbivore's range. 4. The first principal component of leaf traits predicted survival of caterpillars on oak leaves but only marginally predicted their preference between oak species. A multiple regression model showed that evergreenness, toughness, and condensed tannin content were the best predictors of caterpillar survival, and leaf toughness was the best predictor of host preference. 5. Generalist caterpillars may accurately assess the value of novel food sources. Moreover, many leaf traits that have been found to affect herbivory within a plant species can also be used to predict the fitness of a generalist herbivore between species.  相似文献   

13.
Urbanization is associated with numerous changes to the biotic and abiotic environments, many of which lead to a loss of biodiversity. Some studies have documented increased herbivory rates in cities, which has been hypothesized to lead to the evolution of novel defence traits in plants. Yet evidence supporting this hypothesis is contradictory and entirely absent from South American cities. To address this research gap, we evaluated herbivory rates in the native urban wildflower, Turnera subulata (Turneraceae), along an urbanization gradient in Joao Pessoa, Brazil. We predicted that higher rates of herbivory in cities would lead to the expression of cyanogenesis, a chemical defence found in a closely related Turnera species. We estimated herbivory rates and screened for cyanogenesis in 32 populations along the urbanization gradient, quantified by the Human Footprint Index and the amount of impervious surface surrounding each site. We found herbivory rates increased in T. subulata populations with increasing urbanization, but we did not find evidence of cyanogenesis in any of the populations. Our results suggest that although herbivores respond positively to urbanization, the fitness effects of leaf herbivory may be insufficient to select for the evolution of cyanogenesis in some plants. Our results provide valuable insight into the effects of urbanization on plant-herbivore interactions in the tropics.  相似文献   

14.
Habitat fragmentation threatens the survival of many species and local populations. Habitat fragmentation has two major consequences: populations become more isolated and are reduced in size. Small compared with large populations have increased extinction risks because of different types stochasticity (e.g. genetic drift) and inbreeding, which can negatively affect the fitness of individuals or populations. Habitat fragmentation may also change the abiotic conditions of the surrounding landscape, which influences biotic interactions. This review gives an introduction to the theory of the effects of habitat fragmentation on mean fitness of plant populations. It intends to help bridge the gap between conservation biologists and conservation practitioners. The paper shortly introduces basic concepts of population biology, demography and genetics and cites relevant and new literature. Special attention is given to more common plant species, which have attracted far less conservation attention than rare species.  相似文献   

15.
Plants have evolved several anti‐herbivory strategies, including direct defences, such as mechanical and chemical defences, and indirect or biotic defences, such as the recruitment of defending animals. We examined whether the investment plants make in direct defences differs between those which do and do not invest in biotic defences, by comparing standing herbivory and palatability of congeneric species with and without indirect defences at two ontogenetic stages: before and after the onset of indirect defences. We used Cordia alliodora and Croton suberosus as the species with indirect defences and Cordia elaeagnoides and Croton pseudoniveus as the species without indirect defences. We predicted that herbivores would prefer to eat species and stages with indirect defences to those without them. As predicted, we found that herbivores preferred species and ontogenetic stages with indirect defences in all cases. Overall, however, natural levels of herbivory were lower in species with indirect defences. We conclude that indirect defences offer effective protection against herbivores and posit that their recruitment allows plants to reduce investment in other defence mechanisms. Our results support the notion that plants trade‐off between direct and indirect defensive strategies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 536–543.  相似文献   

16.
Knowledge of species diets is critical to assisting our understanding of their ecology. Using microhistological analysis of faecal samples, we described and compared the diets of sympatrically occurring folivorous congenerics, common and mountain brushtail possums (Trichosurus vulpecula and T. cunninghami, respectively). Throughout the 28‐month study period, common brushtails relied heavily on eucalypt foliage, particularly very young leaves, which is consistent with data from captive studies on their dietary physiology. In contrast, eucalypt foliage formed only a small part of the diet of mountain brushtails, which instead relied heavily on silver wattle foliage. The mean number of plant groups per faecal sample was significantly greater for common brushtails than mountain brushtails. No significant differences in diet between male and female mountain brushtails were detected. However, intraspecific differences in diet occurred for common brushtails: the diet of females included significantly less eucalypt foliage and significantly more foliage of the exotic, tree lucerne, than that of males during the Wet Season (April–November), but not during the Dry Season (December–March). Diets varied temporally for both species, with some individuals feeding on seasonally available resources. The diets described for common and mountain brushtails are consistent with those of a dry‐adapted and mesic‐adapted species, respectively. We discuss how our results contribute to our understanding of the evolutionary history of both study species, and more broadly the family Phalangeridae to which they belong. We also consider the diet of our study species in the context of recent advances in our understanding of interactions between plants that produce secondary metabolites, and mammals specialized to feed on them.  相似文献   

17.
Plant resistance to herbivores can be influenced not only by the independent effects of plant genotype and environmental variation, but by interactions between the two. The main aim of this study was to assess the effects of environmental variability (nutrient treatment) on the known genetic-based expression of resistance and defensive chemistry of Eucalyptus globulus to browsing by the generalist mammalian herbivore Trichosurus vulpecula. In a captive feeding trial, we measured intake of seedlings from one relatively resistant (Blue Gum Hill) and one relatively susceptible (St Helens) population of E. globulus grown under two nutrient treatments (no fertiliser, plus fertiliser). There was a significant genotype×fertiliser interaction effect on intake of E. globulus foliage by T. vulpecula, and the predicted genetic-based resistance of the two populations was expressed only for the non-fertilised treatment. Expression of resistance largely reflected the combined and inverse effects of nitrogen and condensed tannin concentrations. The expression of plant secondary metabolite concentration differed between compounds, but in all cases the effects of plant genotype and fertiliser treatment were independent. The formylated phloroglucinol compounds differed significantly between genotypes but not between fertiliser treatments. In contrast, the effect of plant genotype on the expression of condensed tannins was weak but they were significantly reduced by fertiliser. Essential oils were influenced by both plant genotype and fertiliser treatment and were significantly higher in the fertilised seedlings than in the non-fertilised seedlings. This study highlights interactive effects of plant genotype and environment in influencing the phenotypic expression of resistance in a eucalypt species to a mammalian browser. It also demonstrates that this interactive effect is the net result of independent effects of genotype and environment on plant chemistry and finally, that different groups of compounds within a plant can respond very differently to variation in environmental conditions.  相似文献   

18.
Species’ geographic range limits often result from maladaptation to the novel environments beyond the range margin. However, we rarely know which aspects of the n‐dimensional environment are driving this maladaptation. Especially of interest is the influence of abiotic versus biotic factors in delimiting species’ distributions. We conducted a 2‐year reciprocal transplant experiment involving manipulations of the biotic environment to explore how spatiotemporal gradients in precipitation, fatal mammalian herbivory, and pollination affected lifetime fitness within and beyond the range of the California annual plant, Clarkia xantiana ssp. xantiana. In the first, drier year of the experiment, fitness outside the range edge was limited mainly by low precipitation, and there was some evidence for local adaptation within the range. In the second, wetter year, we did not observe abiotic limitations to plant fitness outside the range; instead biotic interactions, especially herbivory, limited fitness outside the range. Together, protection from herbivory and supplementation of pollen resulted in three‐ to sevenfold increases in lifetime fitness outside the range margin in the abiotically benign year. Overall, our work demonstrates the importance of biotic interactions, particularly as they interact with the abiotic environment, in determining fitness beyond geographic range boundaries.  相似文献   

19.
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.  相似文献   

20.
Climate is a powerful force shaping adaptation within species, yet adaptation to climate occurs against a biotic background: species interactions can filter fitness consequences of genetic variation by altering phenotypic expression of genotypes. We investigated this process using populations of teosinte, a wild annual grass related to maize (Zea mays ssp. mexicana), sampling plants from 10 sites along an elevational gradient as well as rhizosphere biota from three of those sites. We grew half‐sibling teosinte families in each biota to test whether trait divergence among teosinte populations reflects adaptation or drift, and whether rhizosphere biota affect expression of diverged traits. We further assayed the influence of rhizosphere biota on contemporary additive genetic variation. We found that adaptation across environment shaped divergence of some traits, particularly flowering time and root biomass. We also observed that different rhizosphere biota shifted expressed values of these traits within teosinte populations and families and altered within‐population genetic variance and covariance. In sum, our results imply that changes in trait expression and covariance elicited by rhizosphere communities could have played a historical role in teosinte adaptation to environments and that they are likely to play a role in the response to future selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号