首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Many soluble proteins are known to interact with membranes in partially disordered states, and the mechanism and relevance of such interactions in cellular processes are beginning to be understood. Bovine α-lactalbumin (BLA) represents an excellent prototype for monitoring membrane interaction due to its conformational plasticity. In this work, we comprehensively monitored the interaction of apo-BLA with zwitterionic and negatively charged membranes utilizing a variety of approaches. We show that BLA preferentially binds to negatively charged membranes at acidic pH with higher binding affinity. This is supported by spectral changes observed with a potential-sensitive membrane probe and fluorescence anisotropy measurements of a hydrophobic probe. Our results show that BLA exhibits a molten globule conformation when bound to negatively charged membranes. We further show, using the parallax approach, that BLA penetrates the interior of negatively charged membranes, and tryptophan residues are localized at the membrane interface. Red edge excitation shift (REES) measurements reveal that the immediate environment of tryptophans in membrane-bound BLA is restricted, and the restriction is dependent on membrane lipid composition. We envision that understanding the mechanism of BLA–membrane interaction would help in bioengineering of α-lactalbumin, and to address the mechanism of tumoricidal and antimicrobial activities of BLA–oleic acid complex.  相似文献   

2.
Pyrene was introduced in acetylcholine receptor (AcChR)-rich membrane preparations of Torpedo californica electroplax. The lifetime of the singlet excited state of pyrene was used to probe the properties of the hydrocarbon regions of the lipid bilayer as well as the possible perturbing effects of cholinomimetic agents on this region. After excitation with a single 15-ns pulse with a Q-switched ruby laser, the lifetime of the pyrene singlet excited state in the membranes was 200 ns. In desensitized membranes the pyrene fluorescence lifetimes remained unchanged when the cholinergic ligands carbamylcholine, d-tubocurarine, decamethonium, and hexamethonium, as well as α-bungarotoxin, were present. By contrast, the lifetime was shortened when local anesthetics were present. In sensitized membranes no changes in the pyrene lifetimes were detected when the membranes were converted from their resting state to a carbamylcholine-induced “desensitized state.” Water-soluble fluorescence quenchers affected the lifetime of pyrene in membranes. The second order rate constants for the pyrene-quencher interaction were used to detect changes in fluidity and/or membrane lipid accessibility to quenchers induced by ligands or anesthetics. No changes were detected in the quenching constants of nitromethane or Tl+ in the presence of cholinergic agents (with the exception of d-tubocurarine); on the other hand, a marked decrease in Tl+ accessibility was induced by the anesthetics procaine and tetracaine. Fluorescene dynamics measurements indicate that the hydrocarbon core of the bulk lipid in electroplax is not significantly affected by binding cholinergic ligands to membranebound AcChR. However, the hydrophobic region of the membrane is perturbed by both local anesthetics and one cholinergic ligand, d-tubocurarine. Pyrene was also incorporated into lipid vesicles prepared from T. californica electroplax lipids. The fluorescence lifetimes and quenching values of these lifetimes yielded results similar to those obtained with both sensitized and “desensitized” membrane preparations. The d-tubocurarine effect on the Tl+ quenching of the pyrene probe is ascribed to direct interaction of d-tubocurarine with the lipids. These findings favor a mechanism in which perturbation of the hydrophobic (lipid) environment of the AcChR in membranes by local anesthetics and even d-tubocurarine may influence the receptor conversion: sensitized state ? desensitized state.  相似文献   

3.
The influence of new hybrid antioxidants ichphans on the structure of liposome lipid bilayer was studied. The analysis of the kinetics of the ascorbate-induced reduction of spin probe radical centers incorporated in a membrane revealed that ichphans produce a modifying effect on the structure of liposome membrane. It was established that derivates with distinct hydrophobic properties transform different sites of the membrane that are the sites of localization of ichphans in the intramembraneous space. The data obtained suggest that lipid components play an important role in the effects of ichphans on biological membranes.  相似文献   

4.
Electron spin resonance spectroscopy (ESR) was used to compare the lipid organization, thermal stability and the physical state of the membrane of a human pathogen, Streptococcus pyogenes and its osmotically fragile L-form with this same L-form now adapted to grow under physiologically isotonic conditions (physiological L-form). Comparison of the hyperfine splittings of a derivative of 5-ketostearic acid spin label, I(1 2, 3), after incorporation into the membrane, revealed that the lipid chain rigidity of these membranes is in the order physiological L-form > osmotically fragile L-form > streptococcus. The signal intensity (of the center magnetic field line) versus temperature analysis showed two transitions for these membranes. The first with melting points of 45, 26 and 36 °C and second transition at 70, 63 and 60 °C for the physiological L-form, osmotically fragile L-form and streptococcal membranes, respectively. This same order of membrane lipid chain rigidity was seen from the cooperativities obtained for each of these systems from analysis based on the expression for an n-order reaction. The I(12,3) and other probes with the paramagnetic group close to the methyl end of the molecule suggested that this difference in lipid chain rigidity between these organisms resides in the environment closer to the lipid head group region rather than in the hydrophobic lipid core. Another major finding was the binding of I(12, 3) at two or more different sites in each of the membranes examined. This change in lipid chain rigidity now provides an explanation to account for the survival of a previously osmotically fragile L-form in physiologically isotonic media by focusing on changes in the physical nature of its membrane. In so doing, it adds to and reinforces the speculation of the potential survival in vivo and involvement in pathogenesis of osmotically fragile aberrant forms of bacteria.  相似文献   

5.
Enfuvirtide and T-1249 are two HIV-1 fusion inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry into host cells. Previous studies established the relative preferences of these peptides for membrane model systems of defined lipid compositions. We aimed to understand the interaction of these peptides with the membranes of erythrocytes and peripheral blood mononuclear cells. The peptide behavior toward cell membranes was followed by di-8-ANEPPS fluorescence, a lipophilic probe sensitive to the changes in membrane dipole potential. We observed a fusion inhibitor concentration-dependent decrease on the membrane dipole potential. Quantitative analysis showed that T-1249 has an approximately eight-fold higher affinity towards cells, when compared with enfuvirtide. We also compared the binding towards di-8-ANEPPS labeled lipid vesicles that model cell membranes and obtained concordant results. We demonstrated the distinct enfuvirtide and T-1249 membranotropism for circulating blood cells, which can be translated to a feasible in vivo scenario. The enhanced interaction of T-1249 with cell membranes correlates with its higher efficacy, as it can increase and accelerate the drug binding to gp41 in its pre-fusion state.  相似文献   

6.
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.  相似文献   

7.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

8.
We have employed an amphiphilic fluorescent probe to elucidate the mechanism by which a class of oxyethylene-oxypropylene copolymers catalyzes the insertion of hydrophobic or amphiphilic molecules into membranes. The rate of binding can be accelerated by over two orders of magnitude in the presence of the catalyst which does not itself disrupt the lipid bilayer. The rate of probe binding to lipid vesicles does not depend on the lipid concentration in the presence or absence of catalyst but is linearly related to the concentration of the catalyst. Probe binding to the polyol surfactant appears to be a component of the catalytic mechanism and equilibrium binding parameters can be determined; these are used to indirectly establish quantitative binding parameters for the probe to the vesicle membrane. The polyol surfactant is also shown to catalyze insertion of the probe into the outer leaflet of a hemispherical lipid bilayer and the plasma membrane of HeLa cells. The latter were also stained by catalyzed transfer of a fluorescent lipid from lipid vesicles. The permeability of the cell membrane is not significantly altered under any of the catalytic conditions. These data, taken together, suggest that the polyol surfactant extracts a monomeric substrate molecule from its aggregate or microcrystal and passes it to the membrane via a loose and transient contact.  相似文献   

9.
The pore forming toxin Hla (α-toxin) from Staphylococcus aureus is an important pathogenic factor of the bacterium S. aureus and also a model system for the process of membrane-induced protein oligomerisation and pore formation. It has been shown that binding to lipid membranes at neutral or basic pH requires the presence of a phosphocholine-headgroup. Thus, sphingomyelin and phosphatidylcholine may serve as interaction partners in cellular membranes. Based on earlier studies it has been suggested that rafts of sphingomyelin are particularly efficient in toxin binding. In this study we compared the oligomerisation of Hla on liposomes of various lipid compositions in order to identify the preferred interaction partners and conditions. Hla seems to have an intrinsic preference for sphingomyelin compared to phosphatidylcholine due to a higher probability of oligomerisation of membrane bound monomer. We also can show that increasing the surface density of Hla-binding sites enhances the oligomerisation efficiency. Thus, preferential binding to lipid rafts can be expected in the cellular context. On the other hand, sphingomyelin in the liquid disordered phase is a more favourable binding partner for Hla than sphingomyelin in the liquid ordered phase, which makes the membrane outside of lipid rafts the more preferred region of interaction. Thus, the partitioning of Hla is expected to strongly depend on the exact composition of raft and non-raft domains in the membrane.  相似文献   

10.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

11.
Tocopherols (vitamin E) located in the hydrophobic domains of biological membranes act as chain breaking antioxidants preventing the propagation of free radical reactions of lipid peroxidation. The naturally occurring form, d-alpha tocopherol is an exquisite molecule in that it is intercalated in the membrane in such a way that the hydrophobic tail anchors the molecule positioning the chromanol ring containing the hydroxyl group, which is the essence of its antioxidant function, at the polar hydrocarbon interface of phospholipid membranes. The interaction of this group with water soluble substances is not very well understood. In the present study, an investigation was made of the interaction of ascorbate and ferrous ions (Fe+2) initiators of lipid peroxidation with alpha tocopherol. The results show that tocopherol increases membrane associated iron. The formation of a tocopherol iron complex in the presence of phospholipid liposomes and ascorbate in its reduced form is indicated. These results suggest a new way in which tocopherols act to inhibit lipid peroxidation.  相似文献   

12.
Liposomes and proteoliposomes obtained from rat brain were used; structural changes induced by Vc5 cytotoxin (CT) from Central Asia cobra venom have been studied by the EPR method using spin probes (5-, 10-, or 12-doxylstearic acid). The addition of CT to liposome samples, containing spin probes resulted in the appearance of a new EPR signal in the initial spectrum (samples without CT), typical of probes with strongly retarded mobility. The presence of hydrophobic interaction between the CT molecules and spin labelled fat acids permits the assumption that CT molecules in liposomes trap both lipid probes and phospholipids localized in the reach of action of hydrophobic forces. CT may be supposed to induce formation in membranes of liposomes with domain structures. As a result of hydrophobic interaction with CT molecules both the phospholipid and lipid probe mobility in the domain is substantially less than that in liposome regions free of CT molecules. Due to this, a new signal appears in the initial EPR spectrum of the spin probes. An analysis of the dependence of the probe order parameter value on CT concentration in samples has suggested that CT act uniformly along the membrane lipid profile with a certain CT concentration range. At high concentrations CT molecules cannot penetrate the lipid region deep enough, due to mutual electrostatic repulsion and steric factors at membrane surface. As a result, structural changes involve regions adjacent to the membrane surface only.  相似文献   

13.
The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.  相似文献   

14.
Sonicated lipid micelles, formed from phospholipids isolated from yolks of fresh hen eggs, were used as a model membrane system for studying the effects of several surfactants on membrane properties. The interactions of the surfactants with the model system were followed through the fluorescence of the hydrophobic probe l-anilino-8-naphthalenesulfonate. The surfactants investigated were polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene thioether (Sterox SK), mono-calcium salt of polymerized aryl alkyl sulfonic acids (Daxad 21), and alkylbenzyl quaternary ammonium halide (AHCO DD 50). All surfactants enhanced fluorescence of the membrane-bound probe, and the degree of this enhancement correlated with the previously established phytotoxicity of these substances. The results indicate that surfactants can produce distinct changes in artificial phospholipid membranes and suggest that this lipid interaction may account for altered membrane permeability characteristics in surfactant-treated plants. The effects are observable for surfactant concentrations as low as 0.0001% (w/v), representing an approximate 10-fold increase in sensitivity for detecting surfactant effects compared with previous results on permeability changes in isolated plant cells.  相似文献   

15.
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.  相似文献   

16.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

17.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

18.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

19.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

20.
Abstract

Dengue virus (DENV) C protein is essential for viral assembly. DENV C protein associates with intracellular membranes through a conserved hydrophobic domain and accumulates around endoplasmic reticulum-derived lipid droplets which could provide a platform for capsid formation during assembly. In a previous work we described a region in DENV C protein which induced a nearly complete membrane rupture of several membrane model systems, which was coincident with the theoretically predicted highly hydrophobic region of the protein. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to this DENV C region, DENV2C6. We show that DENV2C6 partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. These results identify an important region in the DENV C protein which might be directly implicated in the DENV life cycle through the modulation of membrane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号