首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We documented natal and breeding dispersal at several spatial scales by Galápagos Nazca boobies Sula granti, a wide‐ranging pelagic seabird. We found exceptionally low degrees of both types of dispersal despite these birds’ vagility. Median natal dispersal distances were 26 m and 105 m for males and females, respectively. Median breeding dispersal distances for both sexes were 0 m. No natal or breeding dispersals occurred from our study site at Punta Cevallos, Isla Española to six other colonies in the Galápagos, but we did document four long‐distance natal dispersals from Punta Cevallos to islands near the South American coast. Recaptures and dead recoveries of ringed birds showed long distance non‐breeding movements to the Central American coast and elsewhere in the eastern Pacific, contrasting with the very limited dispersal to breeding sites.  相似文献   

2.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

3.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

4.
Adult birds tend to show high fidelity to their breeding territory or disperse over relatively short distances. Gene flow among avian populations is thus expected to occur primarily through natal dispersal. Although natal dispersal is a critical demographic process reflecting the area over which population dynamics take place, low recapture rates of birds breeding for the first time have limited our ability to reliably estimate dispersal rates and distances. Stable isotope approaches can elucidate origins of unmarked birds and so we generated year- and age-specific δ2H and δ34S feather isoscapes (ca. 180 000 km2) of coastal-breeding Ovenbirds (Seiurus aurocapilla) and used bivariate probability density functions to assign the likely natal areas of 35 males recruited as first-year breeders into a population located in northwestern New Brunswick, Canada. Most individuals (80–94% depending on the magnitude of an age correction factor used; i.e. 28–33 out of 35) were classified as residents (i.e. fledged within our study area) and estimated minimum dispersal distances of immigrants were between 40 and 240 km. Even when considering maximum dispersal distances, the likely origin of most first-year breeders was<200 km from our study area. Our method identified recruitment into our population from large geographic areas with relatively few samples whereas previous mark-recapture based methods have required orders of magnitude more individuals to describe dispersal at such geographic scales. Natal dispersal movements revealed here suggest the spatial scale over which many population processes are taking place and we suggest that conservation plans aiming to maintain populations of Ovenbirds and ecologically-similar species should consider management units within 100 or at most 200 km of target breeding populations.  相似文献   

5.
When do localized natural enemies increase species richness?   总被引:1,自引:0,他引:1  
The Janzen–Connell hypothesis states that local species‐specific density dependence, mediated through specialist enemies of offspring such as fungal pathogens and insect seed predators, can facilitate coexistence of species by preventing recruitment near conspecific adults. We use spatially explicit simulation models and analytical approximations to evaluate how spatial scales of offspring and enemy dispersal affect species richness. In comparison with model communities in which both offspring and enemies disperse long distances, species richness is substantially decreased when offspring disperse long distances and enemies disperse short distances. In contrast, when both offspring and enemies disperse short distances species richness more than doubles and adults of each species are highly spatially clumped. For the range of conditions typical of tropical forests, locally dispersing specialist enemies may decrease species richness relative to enemies that disperse long distances. In communities where dispersal distances of both offspring and enemies are short, local effects may enhance species richness.  相似文献   

6.
Capsule Natal dispersal was rapid and distances were short. Winter ranging and breeding dispersal were limited. Few birds undertook large movements.

Aims To investigate the natal and breeding dispersal of Marsh Tits, including the timing of dispersal movements.

Methods Nestlings, juveniles and adults were ringed and searched for over 4500 ha during summer, autumn–winter, and spring over six years. Dispersal distances were measured as metric distances and multiples of territory widths. Ranging distances were compared with dispersal distances.

Results Median distances of natal dispersal were 2.6 territory widths for males (704.5 m) and 3.1 territory widths for females (1065.0 m). Median distances of breeding dispersal were 0.2 territory widths for males and females (58.6 and 53.1 m respectively). Most natal dispersal was completed soon after independence, with further movement in spring. Breeding dispersal was also detected during these periods. Median ranging distances were short, and some winter floaters were identified.

Conclusion Marsh Tits had short dispersal distances, with most dispersal activity occurring in June. Results suggested that dispersal behaviour was sensitive to habitat fragmentation, resulting in poor settling success outside of the natal wood. Habitat fragmentation may, therefore, be a contributory factor in the decline of the Marsh Tit population in Britain.  相似文献   

7.
Natal and breeding dispersal have a major impact on gene flowand population structure. We examined the consequences of nataldispersal on the reproductive success (proportion of pairs rearingchicks) of colonial-breeding Thick-billed murres (Uria lomvia).Reproductive success increased with distance dispersed for thefirst and second breeding attempt. The increase in breedingsuccess leveled off at natal dispersal distances above 7 m.Our results were consistent with the idea that the relationshipbetween dispersal and reproductive success is caused by siteavailability and mate choice as birds willing to disperse fartherhad a greater choice of potential sites and mates. This hypothesiswas supported by the fact that birds dispersing farther weremore likely to pair with an experienced breeder, which increasesthe likelihood of breeding success for young breeders. Explanationsfor increasing breeding success with increased dispersal basedon inbreeding effects were unlikely because most breeding failureswere caused by egg loss rather than infertility or nestlingdeath. However, we could not explain why >50% of birds returnwithin 3 m of the natal site, despite having an up to 50% lowerreproductive success than birds dispersing 7 m or more.  相似文献   

8.
Dispersal of Amazonian birds in continuous and fragmented forest   总被引:1,自引:0,他引:1  
Many ecologists believe birds disappear from tropical forest fragments because they are poor dispersers. We test this idea using a spatially explicit capture data base from the Biological Dynamics of Forest Fragments Project near Manaus, Brazil. We measure bird movements directly, over relatively large scales of space and time, both before and after landscape fragmentation. We found that species which disappear from fragments move extensively between plots before isolation, but not after, and often disperse to longer distances in continuous forest than in fragmented forest. Such species also preferentially emigrate from smaller to larger fragments, showing no preference in continuous forest. In contrast, species that persist in fragments are generally less mobile, do not cross gaps as often, yet disperse further after fragmentation than before. 'Heavy tailed' probability models usually explain dispersal kernels better than exponential or Gaussian models, suggesting tropical forest birds may be better dispersers than assumed with some individuals moving very long distances.  相似文献   

9.
Long‐distance dispersal is a fundamental process in ecology and evolution but the factors that influence these movements remain poorly understood in most species. We used stable hydrogen isotopes to quantify the rate and direction of long‐distance immigration in a breeding population of American redstarts and to test whether the settlement decisions that result in long‐distance dispersal are driven by habitat saturation or by the phenology of breeding‐season resources. Our results provide evidence that both natal dispersal and breeding dispersal were influenced by the timing of breeding‐season phenology, with both age classes more likely to disperse north in years when the onset of breeding‐season phenology occurs earlier than normal. Yearlings were also more likely to disperse north following winters with poor habitat quality on their non‐breeding grounds, demonstrating that carry‐over effects from the non‐breeding season influence natal dispersal in this species. Collectively, these results are consistent with the hypothesis that American redstarts use the phenology of breeding season resources as a cue to select breeding sites. Our results suggest that long‐distance dispersal may allow individuals to rapidly respond to advancing phenology caused by global climate change, though their ability to do so may be constrained by long‐term decline in habitat quality predicted for their tropical non‐breeding grounds.  相似文献   

10.
11.
12.
Animal dispersal is usually studied with capture-mark-reencounter data, which provide information on realized dispersal but rarely on underlying processes. In this context, the unreliable assumption of all habitat being available is usually made when describing and analysing dispersal patterns. However, actual settlement options may be constrained by the spatial distribution of appropriate patches, so an important task to understand movement patterns is to adequately describe dispersal when the dispersers’ options are constrained by the sites that are available to them. Using a long-term monitored population of the migratory lesser kestrel, we show how randomization procedures can be used to describe dispersal strategies in such situations. This species breeds colonially in discrete patches, most individuals (83%) disperse from their natal colony, and dispersers tend to move short distances (median=7.2 km). Observed patterns (natal dispersal rates and median dispersal distances of birds emigrating from their natal colony) were compared with those expected from two null models of random settlement of individuals: in any colony available in the whole population, or within the subpopulation (cluster of colonies) of origin. Our simulations indicate that philopatry to the natal colony was much higher than expected under both null expectations, and observed distances were much lower than expected in the whole population. When individuals were constrained to settle within their natal subpopulation in the simulations, dispersal distances were longer than expected in females, but were higher or lower in males depending on year. Dispersal was not only constrained by the spatial distribution of settlement options, but specific hypotheses arise that can be helpful to design and conduct further research. These results challenge previous interpretations of observed dispersal patterns, which may not reflect free decisions of individuals but environmental or social constraints. We suggest using simulation procedures as a routine to advance in the understanding of dispersal ecology and evolution.  相似文献   

13.
Forest rehabilitation activities have been initiated on degraded peatland at several sites in Southeast Asia. In order to achieve rehabilitation efficiently and on the largest possible scale, cost‐effective, transferable methods need to be established. One potential method, which has previously proven successful in both temperate and neotropical forest ecosystems, is the construction of artificial bird perches outside the forest edge. These provide resting perches for frugivorous birds, encouraging them to fly out of the forest, thus increasing seed dispersal and subsequent seedling recruitment into the degraded area. This method was trialled for the first time in degraded tropical peat swamp forest in Indonesia. The results show that the perches were used by frugivorous birds, leading to a significant increase in seed dispersal; however, seedling recruitment was not increased. The frugivorous birds using the perches were degraded zone species and dispersed mainly tree species from the degraded area. Furthermore, while some seeds of forest‐area tree species were dispersed, largely only the degraded area tree species survived to seedling stage. Neither seasonality nor distance from forest edge proved to be significant factors influencing seed dispersal or seedling recruitment, the latter highlighting that seeds were principally being dispersed from within the degraded area rather than from the forest. Although artificial perches did increase seed dispersal, their use as an actual restoration tool in the process of forest regeneration on degraded tropical peatland is limited. Furthermore, when the cost‐ and effort‐to‐area factors are considered, this method is shown to be inefficient.  相似文献   

14.
Movements of organisms between habitat remnants can affect metapopulation structure, community assembly dynamics, gene flow and conservation strategy. In the tropical landscapes that support the majority of global biodiversity and where forest fragmentation is accelerating, there is particular urgency to understand how dispersal across habitats mediates the demography, distribution and differentiation of organisms. By employing unique dispersal challenge experiments coupled with exhaustive inventories of birds in a Panamanian lacustrine archipelago, we show that the ability to fly even short distances (< 100 m) between habitat fragments varies dramatically and consistently among species of forest birds, and that this variation correlates strongly with species' extinction histories and current distributions across the archipelago. This extreme variation in flight capability indicates that species' persistence in isolated forest remnants will be differentially mediated by their respective dispersal abilities, and that corridors connecting such fragments will be essential for the maintenance of avian diversity in fragmented tropical landscapes.  相似文献   

15.
We documented natal and breeding dispersal at several spatial scales by Galápagos Nazca boobies Sula granti , a wide-ranging pelagic seabird. We found exceptionally low degrees of both types of dispersal despite these birds' vagility. Median natal dispersal distances were 26 m and 105 m for males and females, respectively. Median breeding dispersal distances for both sexes were 0 m. No natal or breeding dispersals occurred from our study site at Punta Cevallos, Isla Española to six other colonies in the Galápagos, but we did document four long-distance natal dispersals from Punta Cevallos to islands near the South American coast. Recaptures and dead recoveries of ringed birds showed long distance non-breeding movements to the Central American coast and elsewhere in the eastern Pacific, contrasting with the very limited dispersal to breeding sites.  相似文献   

16.
ABSTRACT Dispersal events can affect the distribution, abundance, population structure, and gene flow of animal populations, but little is known about long‐distance movements due to the difficulty of tracking individuals across space. We documented the natal and breeding dispersal of shrubland birds among 13 study sites in a 1000 km2 area in southeastern Ohio. In addition, we radio‐marked and tracked 37 adult males of one shrubland specialist, the Yellow‐breasted Chat (Icteria virens). We banded 1925 juveniles and 2112 adults of nine shrubland species from 2002 to 2005. Of these, 33 (1.7%) juveniles were encountered in subsequent years (2003–2006) as adults (natal dispersal) and 442 (20.9%) birds initially banded as breeding adults were re‐encountered in subsequent years (breeding dispersal). Apparent survival of juvenile shrubland birds on their natal patches was 0.024 (95% CI 0.016–0.036). After accounting for the probability of detection, we found that 21% of birds banded as juveniles and recaptured as adults returned to their natal patches, whereas 78% of adult birds showed fidelity to the patch where they were originally captured. Moreover, natal dispersers tended to move farther than breeding dispersers (corrected natal median = 1.7 km ± 0.37; corrected breeding median = 0.23 km ± 0.10). We used our estimates of natal dispersal and annual apparent survival to estimate true survival at 0.11 (95% CI 0.07–0.18) for juveniles in their first year. However, this estimate was only applicable for birds dispersing within 7 km of their natal patches. Interpatch movements of radio‐marked Yellow‐breasted Chats were not uncommon, with 13 of 37 males located in more than one habitat patch. Overall, we observed low natal philopatry, but high adult site fidelity for shrubland birds in our study area. Considering the frequency of short‐distance movements observed (median = 531 m, range = 88–1045 m), clustering of patches within 1 km might facilitate use of shrubland habitat.  相似文献   

17.
1. Obtaining empirical evidence of the consequences of dispersal distance on fitness is challenging in wild animals because long-term, unbiased data on reproduction, survival and movement are notoriously difficult to obtain. 2. Lifetime fitness correlates of natal dispersal distance were studied in an isolated population of the facultatively colonial lesser kestrel Falco naumanni (Fleischer) monitored during 8 years at north-eastern Spain, where most birds (83%) dispersed from their natal colony to settle at distances ranging from 112 m to 136.5 km. 3. Neither annual breeding success nor age at recruitment was affected by natal dispersal distance. However, a capture-mark-recapture analysis revealed that survival during the year following recruitment decreased exponentially with dispersal distance, with differences of up to 15% between philopatrics and long-distance dispersers. In subsequent years, it remained similar irrespective of the natal dispersal distance moved. These results did not seem to be biased by long-distance dispersers settling differentially in the periphery of the population (which could emigrate permanently and be considered dead in future occasions) or within-individual consistency in successive dispersal distances, so our results appear to reflect genuine survival differences between dispersal tactics. 4. Average lifetime fledgling production, average lifetime recruitment success and rate-sensitive individual fitness (λ(ind)) also decreased with the distance from the natal to the first-breeding colony, indicating that dispersal decisions early in life affecting immediate survival prospects may translate into long-term fitness costs. 5. Both survival and lifetime fitness models including continuous dispersal distances significantly improved the characterization of the effect on fitness compared with models considering dispersal as a discrete process (i.e. dispersal vs. philopatry at a colony level). 6. Long-distance dispersers were more likely to establish new colonies regardless of whether they recruited in the centre or the periphery of the population, revealing their important role in the colonization of unoccupied patches. Individuals experienced a higher probability of mortality in small and newly funded colonies, so lifetime fitness costs of dispersal seem to be explained by recruitment in sites where average quality is low because of high uncertainty in survival prospects.  相似文献   

18.
Natal or prebreeding dispersal is a key driver of the functioning, dynamics, and evolution of populations. Conditions experienced by individuals during development, that is, rearing conditions, may have serious consequences for the multiple components that shape natal dispersal processes. Rearing conditions vary as a result of differences in parental and environmental quality, and it has been shown that favorable rearing conditions are beneficial for individuals throughout their lives. However, the long‐term consequences of rearing conditions on natal dispersal are still not fully understood in long‐lived birds. In this study, we aim to test the following hypotheses to address the relationship between rearing conditions and certain components of the natal dispersal process in Bonelli’s eagle (Aquila fasciata): (1) The body condition of nestlings depends on the quality of the territory and/or breeders; and (2) the survival until recruitment, (3) the age of recruitment, and (4) the natal dispersal distance (NDD) all depend on rearing conditions. As expected, nestlings reared in territories with high past productivity of chicks had better body condition, which indicates that both body condition and past productivity reflect the rearing conditions under which chicks are raised. In addition, chicks raised in territories with high past productivity and with good body condition had greater chances of surviving until recruitment. Furthermore, birds that have better condition recruit earlier, and males recruit at a younger age than females. At last, although females in good body condition exhibited higher NDD when they recruited at younger ages, this pattern was not observed in either older females or males. Overall, this study provides evidence that rearing conditions have important long‐term consequences in long‐lived birds. On the basis of our results, we advocate that conservation managers work actively in the promotion of actions aimed at improving the rearing conditions under which individuals develop in threatened populations.  相似文献   

19.
Variation in timing and distance of dispersal movements of juvenile birds may result from differences in competitive ability. Dispersal by low-ranking juveniles may be initiated before dominants if the latter force subordinate siblings from natal areas. Conversely, when vacant territories are limited and are acquired on a first-come first-served basis, selection could operate on young to disperse as early as possible. In this case, dominant individuals with priority of access to resources in the natal area will mature more quickly and are expected to disperse first. If costs of dispersal increase with dispersal distance, dominant juveniles are expected to disperse shorter distances. Alternately, if there are advantages to long-distance dispersal, then dominants, which are in better condition, should disperse further than subordinates. We examined effects of social rank on the timing and distance (to wintering area) of dispersal movements by juvenile western screech-owls, Otus kennicottii, in southwestern Idaho. Based on observations of aggressive interactions made using video cameras attached to nestboxes, we assigned dominance ranks to nestlings within nine broods. We radiotracked young throughout the postfledging period to determine order of dispersal, and we located them after leaving their natal areas to determine distances to apparent overwintering areas. In six of seven broods, for which dispersal information could be recorded, the most dominant juvenile dispersed first. Moreover, in five of seven broods, the least dominant individual was the last individual to disperse, and the order of dispersal matched the dominance hierarchy in four of seven broods. In contrast, social status did not affect postfledging dispersal distance. We conclude that social dominance relationships influenced the timing of dispersal in juvenile western screech-owls but not distance travelled to overwinter sites. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

20.
Some understory insectivorous birds manage to persist in tropical forest fragments despite significant habitat loss and forest fragmentation. Their persistence has been related to arthropod biomass. In addition, forest structure has been used as a proxy to estimate prey availability for understory birds and for calculating prey abundance. We used arthropod biomass and forest structural variables (leaf area index [LAI] and aerial leaf litter biomass) to explain the abundance of White‐breasted Wood‐Wrens (Henicorhina leucosticta), tropical understory insectivorous birds, in six forests in the Caribbean lowlands of Costa Rica. To estimate bird abundance, we performed point counts (100‐m radius) in two old‐growth forests, two second‐growth forests, and two selectively logged forests. Arthropod abundance was the best predictor of wood‐wren abundance (wi = 0.75). Wood‐wren abundance increased as the number of arthropods increased, and the estimated range of bird abundance obtained from the model varied from 0.51 (0.28 – 0.93 [95%CI]) to 3.70 (1.68 – 5.20 [95%CI]) within sites. LAI was positively correlated to prey abundance (P = 0.01), and explained part of the variation in wood‐wren abundance. In forests with high LAI, arthropods have more aerial leaf litter as potential habitat so more potential prey are available for wood‐wrens. Forests with a greater abundance of aerial leaf litter arthropods were more likely to sustain higher densities of wood‐wrens in a fragmented tropical landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号