首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexually antagonistic polymorphisms are polymorphisms in which the allele that is advantageous in one sex is deleterious in the other sex. In an influential 1984 paper, W. Rice hypothesized that such polymorphisms should be relatively common on the X chromosome (or on the W in female‐heterogametic species) but relatively rare on the autosomes. Here, I show that there are plausible assumptions under which the reverse is expected to be true, and point out recent studies that give evidence for sexually antagonistic variation on the autosomes. Although more work is needed to resolve the issue, it is premature to conclude that the X chromosome is a “hot spot” for the accumulation of sexually antagonistic variation.  相似文献   

2.
When selection differs between males and females, pleiotropic effects among genes expressed by both sexes can result in sexually antagonistic selection (SA), where beneficial alleles for one sex are deleterious for the other. For hermaphrodites, alleles with opposing fitness effects through each sex function represent analogous genetic constraints on fitness. Recent theory based on single‐locus models predicts that the maintenance of SA genetic variation should be greatly reduced in partially selfing populations. However, selfing also reduces the effective rate of recombination, which should facilitate selection on linked allelic combinations and expand opportunities for balancing selection in a multilocus context. Here, I develop a two‐locus model of SA selection for simultaneous hermaphrodites, and explore the joint influence of linkage, self‐fertilization, and dominance on the maintainance of SA polymorphism. I find that the effective reduction in recombination caused by selfing significantly expands the parameter space where SA polymorphism can be maintained relative to single‐locus models. In particular, linkage facilitates the invasion of male‐beneficial alleles, partially compensating for the “female‐bias” in the net direction of selection created by selfing. I discuss the implications of accounting for linkage among SA loci for the maintenance of SA genetic variation and mixed mating systems in hermaphrodites.  相似文献   

3.
Males and females differ in their reproductive roles and as a consequence are often under diverging selection pressures on shared phenotypic traits. Theory predicts that divergent selection can favor the invasion of sexually antagonistic alleles, which increase the fitness of one sex at the detriment of the other. Sexual antagonism can be subsequently resolved through the evolution of sex‐specific gene expression, allowing the sexes to diverge phenotypically. Although sexual dimorphism is very common, recent evidence also shows that antagonistic genetic variation continues to segregate in populations of many organisms. Here we present empirical data on the interaction between sexual antagonism and genetic drift in populations that have independently evolved under standardized conditions. We demonstrate that small experimental populations of Drosophila melanogaster have diverged in male and female fitness, with some populations showing high male, but low female fitness while other populations show the reverse pattern. The between‐population patterns are consistent with the differentiation in reproductive fitness being driven by genetic drift in sexually antagonistic alleles. We discuss the implications of our results with respect to the maintenance of antagonistic variation in subdivided populations and consider the wider implications of drift in fitness‐related genes.  相似文献   

4.
Sex chromosomes can evolve gene contents that differ from the rest of the genome, as well as larger sex differences in gene expression compared with autosomes. This probably occurs because fully sex‐linked beneficial mutations substitute at different rates from autosomal ones, especially when fitness effects are sexually antagonistic (SA). The evolutionary properties of genes located in the recombining pseudoautosomal region (PAR) of a sex chromosome have not previously been modeled in detail. Such PAR genes differ from classical sex‐linked genes by having two alleles at a locus in both sexes; in contrast to autosomal genes, however, variants can become associated with gender. The evolutionary fates of PAR genes may therefore differ from those of either autosomal or fully sex‐linked genes. Here, we model their evolutionary dynamics by deriving expressions for the selective advantages of PAR gene mutations under different conditions. We show that, unless selection is very strong, the probability of invasion of a population by an SA mutation is usually similar to that of an autosomal mutation, unless there is close linkage to the sex‐determining region. Most PAR genes should thus evolve similarly to autosomal rather than sex‐linked genes, unless recombination is very rare in the PAR.  相似文献   

5.
Antagonistic pleiotropy (AP)—where alleles of a gene increase some components of fitness at a cost to others—can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex‐specific phenotypic selection estimates—many of which are based on single fitness components.  相似文献   

6.
Connallon T  Clark AG 《Genetics》2012,190(4):1477-1489
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.  相似文献   

7.
A new study in Caenorhabditis elegans shows that homologous autosomes segregate non-randomly with the sex chromosome in the heterogametic sex. Segregation occurs according to size, small autosomes segregating with, and large autosomes segregating away from the X-chromosome. Such sex-biased transmission of autosomes could facilitate the spread of sexually antagonistic alleles whose effects favor the fitness of one sex at the expense of the other. This may provide a first step toward the evolution of new sex determination systems.  相似文献   

8.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

9.
Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.  相似文献   

10.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

11.
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.  相似文献   

12.
Sex‐biased genes—genes that are differentially expressed within males and females—are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male‐ and female‐biased genes. These linkage patterns are often gene‐ and lineage‐dependent, differing between functional genetic categories and between species. Although sex‐specific selection is often hypothesized to shape the evolution of sex‐linked and autosomal gene content, population genetics theory has yet to account for many of the gene‐ and lineage‐specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome‐wide empirical studies, we extend previous population genetics theory of sex‐specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex‐specific selection and sex‐specific recombination rates can generate, and are compatible with, the gene‐ and species‐specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.  相似文献   

13.
Mate choice should erode additive genetic variation in sexual displays, yet these traits often harbor substantial genetic variation. Nevertheless, recent developments in quantitative genetics have suggested that multivariate genetic variation in the combinations of traits under selection may still be depleted. Accordingly, the erosion and maintenance of variation may only be detectable by studying whole suites of traits. One potential process favoring the maintenance of genetic variance in multiple trait combinations is the modification of sexual selection via sexually antagonistic interactions between males and females. Here we consider how interlocus sexual conflict can shape the genetic architecture of male sexual traits in the cricket, Teleogryllus commodus. In this species, the ability of each sex to manipulate insemination success significantly alters the selection acting on male courtship call properties. Using a quantitative genetic breeding design we estimated the additive genetic variation in these traits and then predicted the change in variation due to previously documented patterns of sexual selection. Our results indicate that female choice should indeed deplete multivariate genetic variance, but that sexual conflict over insemination success may oppose this loss of variance. We suggest that changes in the direction of selection due to sexually antagonistic interactions will be an important and potentially widespread factor in maintaining multivariate genetic variation.  相似文献   

14.
Antagonistically selected alleles‐–those with opposing fitness effects between sexes, environments, or fitness components‐–represent an important component of additive genetic variance in fitness‐related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate‐frequency alleles disproportionately contribute to genetic variance of life‐history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus nonantagonistic (e.g., overdominant and frequency‐dependent selection) processes. We show that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, nonantagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection.  相似文献   

15.
The properties of sex chromosomes, including patterns of inheritance, reduced levels of recombination, and hemizygosity in one of the sexes may result in the faster fixation of new mutations via drift and natural selection. Due to these patterns and processes, the two rules of speciation to describe the genetics of postzygotic isolation, Haldane's rule and the large‐X effect, both explicitly include quicker evolution on sex chromosomes relative to autosomes. Because sex‐linked mutations may be the first to become fixed in the speciation process, and appear to be due to stronger genetic drift (in birds), we may identify pronounced genetic differentiation in sex chromosomes in taxa experiencing recent speciation and diverging mainly via genetic drift. Here, we use nine sex‐linked and 21 autosomal genetic markers to investigate differential divergence and introgression between marker types in Certhia americana. We identified increased levels of genetic differentiation and reduced levels of gene flow on sex chromosomes relative to autosomes. This pattern is similar to those observed in other recently‐divergent avian species, providing another case study of the earlier role of sex chromosomes in divergence, relative to autosomes. Additionally, we identify three markers that may be under selection between Certhia americana lineages.  相似文献   

16.
Most meiotic drivers, such as the t‐haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex‐specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture.  相似文献   

17.
The termite Incisitermes schwarzi has multiple sex chromosomes that have arisen by repeated translocations between autosomes and previously existing sex chromosomes. Two sex-linked allozyme loci--Acp-1 and Est-3--are holozygous, not hemizygous, in males (the heterogametic sex). Both loci show less than 1% crossing-over between X and Y chromosomes, and alleles of both are in marked disequilibrium with respect to X vs Y linkage. The two loci assort independently in female meiosis, indicating that they lie on different sex chromosomes. But they are tightly linked in male meiosis because of nonrandom assortment of the multiple X and Y chromosomes in males of this species. The findings of holozygosity and strong linkage disequilibrium suggest that differential selection in the two sexes at or near these loci may be responsible for the establishment of the translocations in this species. The existence of active Y-linked alleles also suggests that the translocations may have occurred recently.  相似文献   

18.
Alleles of sexually antagonistic genes (i.e., genes with alleles affecting fitness in opposite directions in the two sexes) can avoid expression in the sex to which they are detrimental via two processes: they are subsumed into the nonrecombining, sex-determining portion of the sex chromosomes or they evolve sex-limited expression. The former is considered more likely and leads to Y-chromosome degeneration. We mapped quantitative trait loci of major effect for sexually dimorphic traits of Silene latifolia to the recombining portions of the sex chromosomes and found them to exhibit sex-specific expression, with the Y chromosome in males controlling a relatively larger proportion of genetic variance than the X in females and the average autosome. Both reproductive and ecophysiological traits map to the recombining region of the sex chromosomes. We argue that genetic correlations among traits maintain recombination and polymorphism for these genes because of balancing selection in males, whereas sex-limited expression represses detrimental alleles in females. Our data suggest that the Y chromosome of S. latifolia plays a major role in the control of key metabolic activities beyond reproductive functions.  相似文献   

19.
Theory suggests that sex‐specific selection can facilitate adaptation in sexually reproducing populations. However, sexual conflict theory and recent experiments indicate that sex‐specific selection is potentially costly due to sexual antagonism: alleles harmful to one sex can accumulate within a population because they are favored in the other sex. Whether sex‐specific selection provides a net fitness benefit or cost depends, in part, on the relative frequency and strength of sexually concordant versus sexually antagonistic selection throughout a species’ genome. Here, we model the net fitness consequences of sex‐specific selection while explicitly considering both sexually concordant and sexually antagonistic selection. The model shows that, even when sexual antagonism is rare, the fitness costs that it imposes will generally overwhelm fitness benefits of sexually concordant selection. Furthermore, the cost of sexual antagonism is, at best, only partially resolved by the evolution of sex‐limited gene expression. To evaluate the key parameters of the model, we analyze an extensive dataset of sex‐specific selection gradients from wild populations, along with data from the experimental evolution literature. The model and data imply that sex‐specific selection may likely impose a net cost on sexually reproducing species, although additional research will be required to confirm this conclusion.  相似文献   

20.
Connallon T  Clark AG 《Genetics》2011,187(3):919-937
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号