首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biologic assay system, based on complement (C′) inhibition, is described to unravel structural differences among polynucleotides. The C′ system appears particularly suitable to distinguish (1) homo- from copoly-ribonucleotides, (2) deoxyribo- from 2′-OH and other 2′-modified polynucleotides, and (3) single homopolynucleotides from double- or triple-stranded complexes.From these studies a number of polynucleotides emerged with potent anti-C′ activities, worthy of further investigation. The most active polymers were (G)n (polyguanylic acid), (dCc1)n [poly(2′-chloro-2′deoxycytidylic acid)] and (dUz)n [poly(2′-azido-2′-deoxyuridylic acid)].  相似文献   

2.
3.
Abstract

ID NOE 1H NMR spectroscopy at 500 MHz was employed to examine the structure of poly(dA)·poly(dT) in solution. NOE experiments were conducted as a function of presaturation pulse length (50, 30, 20 and 10 msec) and.power (19 and 20 db) to distinguish the primary NOEs from spin diffusion. The 10 msec NOE experiments took 49 hrs and over 55,000 scans for each case and the difference spectra were almost free from diffusion.

The spin diffused NOE difference spectra as well as difference NOE spectra in 90% H2O + 10% D2O in which TNH3 was presaturated enabled to make a complete assignment of the base and sugar protons. It is shown that poly(dA) ·poly(dT) melts in a fashion in which single stranded bubbles are formed with increasing temperature.

Extremely strong primary NOEs were observed at H2′/H2″ when AH8 and TH6 were presaturated. The observed NOEs at AH2′ and that AH2″ were very similar as were the NOEs at TH2′ and TH2″. The observed NOEs at AH2′ and AH2″when AH8 was presaturated were very similar to those observed at TH2′ and TH2″ when TH6 was presaturated. In addition, presaturation of H1′ of A and T residues resulted in similar NOEs at AH2′/H2″ and TH2′/H2″ region and these NOEs at H2′ and H2″ were distinctly asymmetric as expected in a C2′-endo sugar pucker. There was not a trace of NOE at AH8 and TH6 when AH3′ and TH3′ were presaturated indicating that C3′-endo, × = 30–40° conformation is not valid for this DNA. From these NOE data, chemical shift shielding calculations and stereochemistry based computer modellings, we conclude that poly(dA)·poly(dT) in solution adopts a right- handed B-DNA duplex in which both dA and dT strands are conformationally equivalent with C2′-endo sugar pucker and a glycosyl torsion, ×, of ?73°, the remaining backbone torsion angles being φ′ = 221°, ω′ = 212°, ω = 310°, φ = 149°, ψ = 42°, ψ′ = 139°. The experimental data are in total disagreement with the heteronomous DNA model of Arnott et. al. proposed for the fibrous state. (Arnott, S., Chandrasekaran, R., Hall, I.H., and Puigjaner, L.C., Nucl. Acid Res. 11, 4141, 1983).  相似文献   

4.
Antiviral activity of the TiO2·PL·DNA nanobiocomposites was studied on the MDCK cell culture infected with influenza A virus (subtype H3N2). DNA fragments in the nanocomposites are electrostatically bound to titanium dioxide nanoparticles precovered with polylysine. It was shown that TiO2·PL·DNA(v3′) nanocomposite bearing the DNA(v3′) fragment targeted to the 3′-end of the noncoding region of segment 5 of viral RNA specifically inhibited the virus reproduction with the efficiency of 99.8% and 99.9% (i.e., by factors of ~400 and 1000, respectively) at a low concentration of DNA(v3′) in nanocomposite (0.1 and 0.2 μM, respectively). The TiO2·PL·DNA(r) nanocomposite containing an oligonucleotide noncomplementary to viral RNA or oligonucleotide DNA(v3′) unbound to the nanoparticles show very low antiviral activity (inhibition by factors of ~3.5 and 1.3, respectively).  相似文献   

5.
Abstract

5’ and 2’ stabilized (2′-5′)(A)n analogues were synthesized by chemical modifications of enzymatically polymerized (2′-5′)(A)n oligomers. They exhibit an increased antiviral activity after micro-injection in HeLa cell cytoplasm in agreement with their augmented metabolic stability. Their specific in vitro delivery to mouse leukemia cells after encapsulation in targetted liposomes leads to a transient inhibition of protein synthesis and an antiviral activity.  相似文献   

6.
Molecular-mechanics calculations have been carried out on the base-paired hexanucleoside pentaphosphates d(TATATA)2, d(ATATAT)2, d(A6)·d(T6), d(CGCGCG)2, d(GCGCGC)2, and d(C6)·d(G6) in both A- and B-DNA geometries. The calculated relative energies of these polymers are consistent with the relative stabilities of the polymers found experimentally. In particular, the results of our calculations support the observation that the homopolymer d(A)n·d(T)n is more stable in a B-DNA conformation, while the homopolymer d(G)n·d(C)n is more stable in an A-DNA conformation. The molecular interactions responsible for these differential stabilities include both inter- and intrastrand base stacking, as well as base–phosphate interactions. While definitive experiments on the heteropolymer stabilities have not yet been carried out, the results of our calculations also suggest a greater stability of the purine-3′,5′-pyrimidine sequence over the pyrimidine-3′,5′-purine sequence in both the A- and B-conformations. The reason for this greater stability lies in the importance of the inherent directionality (5′ → 3′ vs 3′ → 5′) of phosphate–base and base–base interactions. The largest conformation change observed on energy refinement is sugar repuckering, which occurs mainly on pyrimidine-attched sugars and only in the B-DNA geometry. We suggest a molecular mechanism, specifically, differential base–sugar steric interactions involving neighboring sugars, to explain why this repuckering occurs more with d(A6)·d(T6) than with other isomers.  相似文献   

7.
Aims: To evaluate the antiviral activity of Bignoniaceae species occurring in the state of Minas Gerais, Brazil. Methods and Results: Ethanol extracts of different anatomical parts of bignoniaceous plant species have been evaluated in vitro against human herpesvirus type 1 (HSV‐1), vaccinia virus (VACV) and murine encephalomyocarditis virus (EMCV) by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. A total of 34 extracts from 18 plant species selected according to ethnopharmacological and taxonomic criteria were screened. Fifteen of the 34 extracts (44·1%) have disclosed antiviral activity against one or more of the viruses assayed with EC50 values in the range of 23·2 ± 2·5–422·7 ± 10·9 μg ml?1. Conclusions: Twelve of the 34 extracts (35·3%) might be considered promising sources of antiviral natural products, as they have shown EC50 ≤ 100 μg ml?1. The present screening discloses the high potential of the Bignoniaceae family as source of antiviral agents. Significance and Impact of the Study: Active extracts were identified and deserve bioguided studies for the isolation of antiviral compounds and studies on mechanism of action.  相似文献   

8.
Aims: To investigate the in vitro antiviral activity of Distictella elongata (Vahl) Urb. ethanol extracts from leaves (LEE), fruits (FEE), stems and their main components. Methods and Results: The antiviral activity was evaluated against human herpesvirus type 1 (HSV‐1), murine encephalomyocarditis virus (EMCV), vaccinia virus Western Reserve (VACV‐WR) and dengue virus 2 (DENV‐2) by the 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) colorimetric assay. LEE presented anti‐HSV‐1 [EC50 142·8 ± 5·3 μg ml?1; selectivity index (SI) 2·0] and anti‐DENV‐2 activity (EC50 9·8 ± 1·3 μg ml?1; SI 1·5). The pectolinarin ( 1 ) isolated from LEE was less active against HSV‐1 and DENV‐2. A mixture of the triterpenoids ursolic, pomolic and oleanolic acids was also obtained. Ursolic and oleanolic acids have shown antiviral activity against HSV‐1. A mixture of pectolinarin ( 1 ) and acacetin‐7‐O‐rutinoside ( 2 ) was isolated from FEE and has presented anti‐DENV‐2 activity (EC50 11·1 ± 1·6 μg ml?1; SI > 45). Besides the antiviral activity, D. elongata has disclosed antioxidant effect. Conclusions: These data shows that D. elongata has antiviral activity mainly against HSV‐1 and DENV‐2, besides antioxidant activity. These effects might be principally attributed to flavonoids isolated. Significance and Impact of the Study: Distictella elongata might be considered a promising source of anti‐dengue fever phytochemicals.  相似文献   

9.
A (2′–5′)An synthetase activity was isolated from human placental extracts by affinity chromatography on poly(rI)·poly(rC)-agarose. The oligonucleotide (2′–5′)An was identified by (1) chromatography on PEI-cellulose and DEAE-cellulose, (2) inhibition of polypeptide synthesis in lysed rabbit reticulocytes (3) competition of the binding of pppA(pA)3,3′-[32P]pCp to rabbit reticulocyte lysates, and (4) alkaline phosphatase digestion. The synthetase activity in most placental preparations is activated by natural or synthetic dsRNA. However, in a few placental synthetase preparations, dsRNA is only marginally stimulatory and only becomes effective by prior treatment of the enzyme preparations with the calcium-dependent micrococal nuclease. This suggeststhat there is an endogenous placental dsRNA contaminant in the enzyme preparations. In some synthetase preparations, a second dsRNA-stimulated product, tentatively identified as the nucleotide 5′-IMP, is also observed. Because the specific AMP deaminase inhibitor coformycin (10 μM) blocks the formation of IMP from ATP and causes a quantitative accumulation of AMP, and because the formation of IMp becomes independent of dsRNA when ADP or AMP is used in plase of ATP, the presence of a dsRNA-stimulated ATP phosphohydrolase (ATPase) activity in human placenta is suggested.  相似文献   

10.
Some new chloride and oxinate mixed complexes of general composition MCl4?nOxn (M = U(IV) and Th(IV); Ox = 8-hydroxyquinolinato; n = 1, 2) were synthesized by the reaction of uranium or thorium tetrachlorides with M′Ox (M′ = Na, K, Tl) or MgOx2. By using the oxine the formation of the adducts MCl4·2HOx occurs, without the substitution of the chloride ions. By suspending MCl4·2HOx in the presence of a strong base (Proton Sponge) MCl2Ox2 was formed immediately. The reaction of UCl2Ox2 and TlCp did not afford Cp2UOx2, which can be easily prepared by reaction of Cp2U(NEt2)2 and HOx.  相似文献   

11.
The reaction of xanthosine-5′'-monophosphate disodium salt (5′-XMPNa2) with Pt(II), Cu(II) and Mg(II) ions produced compounds of the type cis- and trans-Pt(NH3)2(XMPNa2)nCl2·xH2O, where n = 1 or 2; Pt(XMPNa2)nCl2·xH2O, where n = 1-4, x = 1,4 & 6; Cu(XMP)·6H2O and Mg(XMP)·xH2O, where x = 9 or 4. In the complexes synthesized here at neutral pH values, the nucleotide binds through the N7-atom of the purine ring system, whereas for Cu(II) and Mg(II) compounds obtained at pH = 4 a direct metal-phosphate interaction as well as Nτ bonding is proposed.  相似文献   

12.
The acetylacetonates VO(acac)2, M(acac)3, where M = V, Mn or Fe and [M′(acac)2]n, where M′ = Co, Ni or Cu, have been reacted with pyridine-2,6-dicarboxylic acid (dipicH2) in acetone to afford the complexes VO(dipic)·2H2O, M(acac)(dipic)·xH2O [M = V, Mn or Fe and x = 1 or 0] and M2(dipic) (dipicH)2·yH2O [M = Co, Ni or Cu and y = 2 or 0]. The cobalt(II) and nickel(II) complexes are converted to polymeric [M(dipic)]n in ethanol and all three complexes formulated as M2(dipic)(dipicH)2 react with 2,2′2″-terpyridyl to yield M(dipic)(terpy)·3H2O. The vanadium(III) complex V(acac)(dipic) is oxidized to VO(dipic)·4H2O in aqueous solution via the vanadium(III) intermediate V(OH)(dipic)·2H2O. Tentative structural conclusions are drawn for certain of these new complexes based upon room temperature spectral and magnetic measurements. The characterization of these complexes has included selected studies of their X-ray photoelectron spectra.  相似文献   

13.
Abstract

Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U)·poly(A) ·poly(U) triple helix. We compared the Raman spectra of poly(U)·poly(A)·poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A)·poly(U). The presence of a Raman band at 863 cm?1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3′ endo; that of the second poly(U) chain may be C2′ endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A)·poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

14.
Abstract

Oligonucleotides 3′-d(GT)5-(CH2CH2O)3-d(GT)5-3′ (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140–142 (1992)]. Four d(GT)5 strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3′-dG(TG)4G-(CH2CH2O)3- dG(GT)4G-3′ (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G·G and T·T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dynam. 18, 493–503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (τ) of Et:qGT (q = 0.15 ±0.01 and τ = 24 ±1 ns) and Et:hp-GT (q = 0.10 ± 0.01 and τ = 16.5 ± 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient ω = 3.9 ± 0.1 and the binding constant K= (6.4 ± 0.1)·10M?1. The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of inerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732–739 (2001)]. The anticooperative type of Et binding was observed in case of hp- GT ps-DNA, with the maximum number of bound Et molecules, N = 4 ÷ 5, and the association constant K = (1.5 ± 0.1)·105 M?1. Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.  相似文献   

15.
A new one‐dimensional (1D) copper(II) coordination polymer {[Cu2(dmaepox)(dabt)](NO3)·0.5 H2O}n, where H3dmaepox and dabt denote N‐benzoato‐N′‐(3‐methylaminopropyl)oxamide and 2,2′‐diamino‐4,4′‐bithiazole, respectively, was synthesized and characterized by single‐crystal X‐ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis‐oxamido and carboxylato groups to form a 1‐D coordination polymer with the corresponding Cu···Cu separations of 5.1946(19) and 5.038(2) Å. There is a three‐dimensional supramolecular structure constructed by hydrogen bonding and π–π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS‐DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.  相似文献   

16.
Taste effects of six newly synthesized ribonucleotide derivatives, i.e., disodium salts of 2-methyl-5′-inosinic acid · 6H2O, 2-ethyl-5′-inosinic acid · 1.5H2O, 2-N-methyl-5′-guanylic acid · 5.5H2O, 2-N-dimethyl-5′-guanylic acid · 2.5H2O, 2-methylthio-5′-inosinic acid · 6H2O and 2-ethylthio-5′-inosinic acid · 2H2O, were studied. Stimulus thresholds (detection thresholds) of these derivatives ranged from about 0.02 to 0.006 g/100ml. Flavor-enhancing activities of them were 2.3 to 8.0 times larger than that of disodium 5′-inosinate · 7.5H2O IMP) in the synergistic effect with monosodium glutamate. Furthermore, the quality of taste of all the derivatives was recognized to be the same kind to that of IMP.  相似文献   

17.
Abstract

Hepatitis B virus (HBV) infection is a major worldwide health problem that requires the development of improved antiviral therapies. Here, a series of 4′-Azido-thymidine/4′-Azido-2′-deoxy-5-methylcytidine derivatives (6, 10–15) were synthesized, and their anti-HBV activities evaluated. Compounds 10–15 were synthesized via an SNAr reaction of 18, in which the 4-position of the thymine moiety was activated as the 2,4,6-triisopropylbenzenesulfonate. Compounds 11–15 showed no antiviral activity. However, 4′-Azido thymidine (6) and 4′-Azido-2′-deoxy-5-methylcytidine (10) displayed significant anti-HBV activity (EC50 = 0.63 and 5.99?µM, respectively) with no detectable cytotoxicity against MT-2 cells up to 100?µM.  相似文献   

18.
L-thyroxine (L-T4) potentiates the antiviral activity of human interferon-γ (IFN-γ) in HeLa cells. We have added thyroid hormone and analogues to cells either 1) for 24 h pretreatment prior to 24 h of IFN-γ (1.0 IU/ml), 2) for 24 h cotreatment with IFN-γ, 3) for 4 h, after 20 h cell incubation with IFN-γ, alone, or 4) for 24 h pretreatment and 24 h cotreatment with IFN-γ. The antiviral effect of IFN-γ was then assayed. L-T4 potentiated the antiviral action of IFN-γ by a reduction in virus yield of more than two logs, the equivalent of a more than 100-fold potentiation of the IFN's antiviral effect. 3,3′,5-L-triiodothyronine (L-T3) was as effective as L-T4 when coincubated for 24 h with IFN-γ but was less effective than L-T4 when coincubated for only 4 h. D-T4, D-T3, 3,3′,5-triiodothyroacetic acid (triac), tetraiodothyroacetic acid (tetrac), and 3,5-diiodothyronine (T2) were inactive. When preincubated with L-T4 for 24 h prior to IFN-γ treatment, tetrac blocked L-T4 potentiation, but, when coincubated with L-T4 for 4 h after 20 h IFN-γ, tetrac did not inhibit the L-T4 effect. 3,3′,5′-L-triiodothyronine (rT3) also potentiated the antiviral action of IFN-γ, but only in the preincubation model. Furthermore, the effects of rT3 preincubation and L-T3 coincubation were additive, resulting in 100-fold potentiation of the IFN-γ effect. When L-T4, L-T3, or rT3, plus cycloheximide (5 μg/ml), was added to cells for 24 h and then removed prior to 24 h IFN-γ exposure, the potentiating effect of the three iodothyronines was completely inhibited. In contrast, IFN-γ potentiation by 4 h of L-T4 or L-T3 coincubation was not inhibited by cycloheximide (25 μg/ml). These studies demonstrate two mechanisms by which thyroid hormone can potentiate IFN-γ's effect: 1) a protein synthesis-dependent mechanism evidenced by enhancement of IFN-γ's antiviral action by L-T4, L-T3, or rT3 preincubation, and inhibition of enhancement by tetrac and cycloheximide, and 2) a protein synthesis-independent (posttranslational) mechanism, not inhibited by tetrac or cycloheximide, demonstrated by 4 h coincubation of L-T4 or L-T3, but not rT3, with IFN-γ. The protein synthesis-dependent pathway is responsive to rT3, a thyroid hormone analogue generally thought to have little effect on protein synthesis. A posttranslational mechanism by which the antiviral action of IFN-γ can be regulated has not previously been described. © 1996 Wiley-Liss, Inc.  相似文献   

19.
We have examined iodothyronine deiodination in subcellular fractions of cerebral cortex obtained from hypothyroid rats. Enzymatic activities were measured at 37°C in the presence of 20 mM dithiothreitol with 125I-labeled T4 and 125I-labeled rT3 as substrate for 5′-deiodination and 131I-labeled T3 as the substrate for the 5-deiodinase. Reaction products were separated by descending paper and/or ion-exchange chromatography. Cerebral cortex subcellular fractions were also characterized by marker enzyme analysis and electron microscopy. Under optimal reaction conditions more than 80% of the 5′-deiodinase was recovered after fractionation. Both 5′-deiodinase and (Na+ +K+-ATPase showed similar subcellular distributions and were enriched approx. 3-fold in the easily sedimenting membrane fraction and nerve terminal plasma membranes. Crude microsomal membranes (6·106g·min pellet) also showed 2-fold enrichment of these enzymes. Nuclei and isolated mitochondria were devoid of deiodinating activity. T4 and T3 5-deiodinating activity was absent in the easily sedimenting membranes and present but not enriched in particulate fractions containing microsomal membranes. These data suggest that iodothyronine 5′-deiodinase is associated with plasma membrane fractions in the cerebral cortex.  相似文献   

20.
Guanosine 5′-tetraphosphate (GTP4) stimulated mammalian adenylate cyclase activity at concentrations down to 1 μM. Greater stimulatory activity was apparent with lung than with heart, brain or liver from the rat. At a concentration of 0.1 mM, GTP4 stimulated lung adenylate cyclase activity from rat, guinea pig and mouse about four-fold. Other guanine nucleotides such as GTP, GDP, GMP, guanosine 3′, 5′-monophosphate and 5′-guanylylimidodiphosphate (GMP · PNP) also stimulated mammalian adenylate cyclase activity. GMP · PNP irreversibly activated, whereas GTP4 and GTP reversibly activated adenylate cyclase. Adenosine 5′-tetraphosphate (ATP4) stimulated rat lung and liver but inhibited rat heart and brain adenylate cyclase activities. Lung from guinea pig and mouse were not affected by ATP4. The formation of cyclic AMP by GTP4-stimulated rat lung adenylate cyclase was verified by Dowex-50 (H+), Dowex 1-formate and polyethyleneimine cellulose column chromatography. GTP4 was at least three times more potent than 1-isoproterenol in stimulating rat lung adenylate cyclase activity. The β-adrenergic receptor antagonist propranolol blocked the effect of 1-isoproterenol but not that of GTP4, thus, suggesting that GTP4 and β-adrenergic agonists interact with different receptor sites on membrane-bound adenylate cyclase. Stimulation of rat lung and liver adenylate cyclase activities with 1-isoproterenol was potentiated by either GTP4 or GMP. PNP, thus indicating that GTP4 resembles other guanine nucleotides in their capacity to increase the sensitivity of adenylate cyclase to β-adrenergic agonists. Stimulation of adenylate cyclase activity by guanine derivatives requires one or more free phosphate moieties on the 5 position of ribose, as no effect was elicited with guanine, guanosine, guanosine 2′-monophosphate, guanosine 3′-monophosphate or guanosine 2′,5′-monophosphate. Ribose, ribose 5-phosphate, phosphate and pyrophosphate were inactive. Pyrimidine nucleoside mono-, di-, tri- and tetraphosphates elicited negligible effects on mammalian adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号