首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Plastic formulations containing up to 40% starch were prepared and blown into thin films using extrusion methods. Extruded films were evaluated for their biodegradability by exposing them to a consortium of starch degrading bacteria in the laboratory for 45 days and in the La Silla river located in Monterrey, N.L. Mexico for up to 60 days. Biodegradability was assessed by measuring changes in weight loss and chemical composition of the films using Fourier transform infrared (FTIR) spectroscopy. While little or no degradation was apparent in control films made up of 100% low density polyethylene (LDPE) or 100% poly-(ethylene-co-acrylic acid) (EAA), most of the starch was depleted in starch-containing films exposed in the river. Starch degradation in films exposed to amylolytic bacteria in the laboratory was relatively slower. Also, increasing the amount of EAA from 25% to 50% substantially reduced starch depletion in these films.Abbreviations FTIR Fourier transform infrared - LDPE low density poly-(ethylene) - EAA poly-(ethyleneco-acrylic acid) - SEM Scanning electron microscopy The mention of firms names or trade products does not imply that they are endorsed or recommended by the U. S. Department of Agriculture over the firms or similar products not mentioned. All programs and services of the U. S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.  相似文献   

2.
Plastic films containing cornstarch (40% dry weight) in combination with polyethylene (PE) and polyethylene-co-acrylic acid (EAA) were exposed to river and pond habitats for up to 60 days. Fourier transform infrared (FTIR) spectroscopic analysis of the starch-plastic films indicated that up to about 40% of starch in the films disappeared after 60 days' exposure. PE and EAA components were unchanged during this period. A diverse microbial biofilm quickly accumulated on each of the plastic films in both environments. Although the amount of biofilm accumulation was greater in the river environment than in the pond environment, there was little quantitative difference in the extent of biofilm formation on plastic films composed of PE, EAA, or starch-PE-EAA in either environment. All three types of plastic films were heavily colonized by a midge-fly larva (Dicrotendipes sp.) by 60 days of exposure in the aquatic environments, but only starch-containing plastic films showed any evidence of physical damage that could have been a result of ingestion of the plastic by the larvae (pond>river), suggesting that, in addition to microbial starch degradation, biodisintegration may also be a significant factor influencing the environmental fate of starch-containing plastics.  相似文献   

3.
Cells of the amylolytic bacterium KB-1 (thought to be an Arthrobacter sp.) adhered (~70%) to the surface of plastic films composed of starch-poly (methylacrylate) graft copolymer (starch-PMA), but did not adhere (<10%) to films composed of polymethylacrylate (PMA), polyethylene (PE), carboxymethyl cellulose, or a mixture of PE plus poly (ethylene-coacrylic acid) (EAA), starch plus PE, or starch plus PE and EAA. About 30% of the cells adhered to gelatinized insoluble starch. Dithiothreitol (5 mM), EDTA (5 mM), and soluble starch (1%, wt/vol) had little effect on the adhesion of KB-1 cells to starch-PMA films. However, glutaraldehyde-fixed cells, azide-treated cells, and heat-killed cells did not bind to starch-PMA plastic, suggesting that the observed adhesion required cell viability. Culture supernatant from 5-day-old KB-1 cultures contained a proteolytic enzyme that inhibited cell adhesion to starch-PMA plastics. Trypsin-treated KB-1 cells also lost their ability to bind to starch-PMA plastic. When washed free of trypsin and suspended in fresh medium, trypsin-treated bacteria were able to recover adhesion activity in the absence, but not in the presence, of the protein synthesis inhibitor chloramphenicol. These results suggested that adhesion of KB-1 to starch-PMA plastic may be mediated by a cell surface protein. Although KB-1 bacteria bound to starch-PMA plastic, they did not appear to degrade starch in these films. Evidence of starch degradation was observed for starch-PE-EAA plastics, where <10% of the bacteria was bound, suggesting that cell adhesion may not be a prerequisite for degradation of some starch-containing plastics.  相似文献   

4.
Equations were obtained from response surface models to show how the ultimate tensile strength (UTS) and percent elongation at break (%E) of solution-cast films vary with relative amounts of starch, poly(vinyl alcohol) (PVA), poly(ethylene-co-acrylic acid) (EAA) and glycerol in the formulation. Equations found from the response surface methodology were used to optimize the relative amounts of the four components with respect to the physical properties of cast films. The model showed that only glycerol content was important to predict the UTS of the films. The model for %E was more complicated, since there was a three-way interaction between EAA, PVA and glycerol. This model also contained two other terms: a two-way interaction evolving glycerol and EAA. and a (PVA)3 term. In general, %E increased as EAA, PVA and glycerol were increased together. However, increased amounts of EAA could decrease %E if EAA was the only component increased. It is believed that EAA forms complexes with both starch and PVA, thereby increasing compatibility of the two polyhydroxy polymers. As %E increases, UTS of the films decreases. All the films produced in this paper were made with starch contents above 50% to insure an optimum film formulation with at least 50% starch. A mixture of 55·6% starch, 2·8% EAA, 28·3% PVA and 13·3% glycerol is believed to be close to the optimum formulation to obtain films having at least 100%E and UTS of 25 MPA, while still maintaining starch concentrations above 50%.  相似文献   

5.
Composting of extruded foams made of starch acetate and poly lactic acid (PLA) with pre-conditioned yard waste was studied using a laboratory composting system. Extruded foams of high amylose starch were used as the control. Degradation was measured by analyzing the exhaust gases for carbon dioxide. There were significant differences in the amounts of carbon dioxide produced in the vessels containing foams of high amylose starch and foams of starch acetate blended with 20% or 30% PLA. The high amylose starch foams completely degraded within 15 days. The starch acetate foams with 0% PLA took longer, with evolution of carbon dioxide still measurable after 55 days. The rate of degradation was faster for foams with higher PLA contents. The starch acetate foams took even longer to degrade. The maximum time was found to be 130 days for the starch acetate foams.  相似文献   

6.
The aim of this work is to prepare starch/PVA composite films added nano-sized poly(methyl methacrylate-co-acrylamide) (PMMA-co-AAm) particles and to investigate the mechanical properties, water barrier properties, and soil burial degradation for the films. Composite films were prepared by using corn starch, polyvinyl alcohol (PVA), nano-sized PMMA-co-AAm particles, and additives, i.e., glycerol (GL), xylitol (XL), and citric acid (CA). Nano-sized PMMA-co-AAm particles were synthesized by emulsion polymerization. The results of the evaluation of properties for prepared films indicated that compared with films without PMMA-co-AAm particles, the mechanical properties and water resistance were improved up to 70-400% by the addition of nano-sized PMMA-co-AAm. In addition, the results of the soil burial biodegradation revealed that films added PMMA-co-AAm particles were degraded by about 45-65% after 165 days.  相似文献   

7.
Numerous waterborne outbreaks of giardiasis have occurred since 1965, yet little or no information has been reported on the viability of Giardia cysts in different aquatic environments. We have studied the viability of Giardia muris cysts suspended in lake, river, and tap water, while also monitoring water temperature, dissolved oxygen, pH, and other water quality parameters. Fecal pellets containing G. muris cysts were placed in glass vials covered with filter paper and exposed to (i) lake water at 15 ft (ca. 4.6 m) and 30 ft (ca. 9.2 m), (ii) river water, (iii) tap water, and (iv) distilled water stored under laboratory conditions. At 3, 7, 14, 28, 56, and 84 days, two vials from each environment were removed, and cyst viability was determined by (i) fluorogenic dye exclusion, (ii) production of giardiasis in an animal, and (iii) cyst morphology by Nomarski microscopy. In the fall, the cysts suspended at 30 ft in lake water remained viable for up to 56 days whereas cysts stored at 15 ft were nonviable after day 28. The G. muris cysts exposed to river water remained viable up to 28 days as determined by the production of giardiasis in mice. G. muris cysts suspended in tap water showed no signs of viability after 14 days, while cysts serving as controls (exposed to refrigerated distilled water) remained viable for up to 56 days. In the winter, Giardia cysts suspended in either lake or river water were viable for 56 to 84 days whereas cysts exposed to tap water were nonviable by day 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Viability of Giardia cysts suspended in lake, river, and tap water.   总被引:5,自引:4,他引:1       下载免费PDF全文
Numerous waterborne outbreaks of giardiasis have occurred since 1965, yet little or no information has been reported on the viability of Giardia cysts in different aquatic environments. We have studied the viability of Giardia muris cysts suspended in lake, river, and tap water, while also monitoring water temperature, dissolved oxygen, pH, and other water quality parameters. Fecal pellets containing G. muris cysts were placed in glass vials covered with filter paper and exposed to (i) lake water at 15 ft (ca. 4.6 m) and 30 ft (ca. 9.2 m), (ii) river water, (iii) tap water, and (iv) distilled water stored under laboratory conditions. At 3, 7, 14, 28, 56, and 84 days, two vials from each environment were removed, and cyst viability was determined by (i) fluorogenic dye exclusion, (ii) production of giardiasis in an animal, and (iii) cyst morphology by Nomarski microscopy. In the fall, the cysts suspended at 30 ft in lake water remained viable for up to 56 days whereas cysts stored at 15 ft were nonviable after day 28. The G. muris cysts exposed to river water remained viable up to 28 days as determined by the production of giardiasis in mice. G. muris cysts suspended in tap water showed no signs of viability after 14 days, while cysts serving as controls (exposed to refrigerated distilled water) remained viable for up to 56 days. In the winter, Giardia cysts suspended in either lake or river water were viable for 56 to 84 days whereas cysts exposed to tap water were nonviable by day 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Starch depletion and sugars in developing cotton leaves   总被引:1,自引:1,他引:0       下载免费PDF全文
Chang CW 《Plant physiology》1980,65(5):844-847
Cotton plants (cv. Coker 100) were exposed to a 14-hour dark period. Starch degradation occurred with no accumulation of sugars due mainly to translocation. Considerable amounts of starch degradation products however were detected from leaves after phloem transport was blocked. A minor component (10 to 25% of total starch) with a linear structure, amylose, was preferentially degraded, whereas the major multiple-branched component (about 80%), amylopectin, showed an increasing resistance to degradation with leaf age. This relationship was also shown by the decreasing iodine-binding capacity of unit starch with increasing leaf age. The structural resistance of amylopectin to enzymic dark degradation was one of the barriers to starch dissolution in cotton.  相似文献   

10.
The effect of acetylation of potato starch on swelling, enzymatic degradation, and bovine serum albumin (BSA, molecular mass 68 kDa) release rate from polymer films was studied. Potato starch and potato starch acetates (SA), having a degree of substitution of 1.9 or 2.6, were investigated. Polymer films were incubated in phosphate buffer solution pH 7.4 in the absence and presence of enzymes (alpha-amylase, amyloglucosidase, esterase) or in human serum. The acetylation of potato starch decreased its swelling considerably. Increased acetylation of starch also considerably retarded its enzymatic degradation. Due to the decreased swelling and degradation of SA films, BSA was released much slower from SA films than from potato starch films, both in the presence and absence of enzymes.  相似文献   

11.
Hydroxypropylated and oxidised potato starch (HONPS) was used together with glycerol and water to produce thermoplastic starch. The amount of glycerol was kept constant at 22 parts by weight per 100 parts of dry starch. The thermoplastic starch was converted into films/sheets using three different processing techniques; casting, compression moulding and film blowing. The last two methods represent typical thermoplastic conversion techniques requiring elevated processing temperatures. By means of size-exclusion chromatography, it was found that compression moulding and film blowing led to some degradation of high-molecular weight amylopectin as well as of high-molecular weight amylose-like molecules. The degradation was significantly less pronounced for the cast films. The morphology of the specimens was quite complex and phase separations on different levels were identified. In the cast films and, to a lesser extent, in the compression-moulded specimens, a fine network structure could be distinguished. Such a structure could however not be ascertained in the film-blown material and this is discussed in terms of the thermo-mechanical treatment of the starch materials.  相似文献   

12.
Influence of amylose content on starch films and foams   总被引:1,自引:0,他引:1  
After extraction of smooth pea starch and waxy maize starch from pure amylose and amylopectin fractions, films with various amylose contents were prepared by casting in the presence of water or water with glycerol. For unplasticized films, a continuous increase in tensile strength (40–70 MPa) and elongation (4–6%) was observed as amylose increased from 0 to 100%. Discrepancies with values obtained for native starches with variable amylose content and different botanical origins were attributable to variations in the molecular weights of components. Taking cell wall properties into account, the values obtained in the laboratory were used to improve the relation between the flexural behavior of extruded foams and the model of cellular solids with open cavities.

The properties of plasticized films were not improved by the presence of glycerol and remained constant when amylose content was higher than 40%. Results are interpreted on the basis of topological differences between amylose and amylopectin.  相似文献   


13.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

14.
The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture.  相似文献   

15.
The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity) resulting in films that vary in the degree of starch crystallinity and glycerol and water content. The permeation of two model volatiles (carvone and diacetyl) at 20 degrees C and at 30, 60, or 90% relative humidity (RH) was analyzed gravimetrically. Further, the solubility of the two model compounds (under conditions where the permeation experiments were carried out) was determined. From the obtained permeation and solubility data, the diffusion coefficients of these compounds in the different starch films were calculated. The crystallinity in the starch films increased with increasing water content of the films during preparation. The water content of the resulting films in turn increased with increasing glycerol and when the films were exposed to a higher RH during drying or conditioning. For films with the same composition, the flux for diacetyl was greater than for carvone. The solubilities of diacetyl and carvone were slightly dependent on the properties of the films. It was found that with increasing starch crystallinity the diffusion coefficient for both compounds decreases, which is probably due to the impermeability of starch crystallites. Interestingly, in films with about the same extent of crystallinity, the diffusion can be described with the free volume model, with water and glycerol determining the amount of free volume.  相似文献   

16.
To evaluate immobilized bacteria technology for the removal of low levels of glyphosate (N-phosphonomethylglycine) from aqueous industrial effluents, microorganisms with glyphosate-degrading activity obtained from a fill and draw enrichment reactor inoculated with activated sludge were first exposed to glyphosate production wastes containing 500-2000 mg glyphosate/L. The microorganisms were then immobilized by adsorption onto a diatomaceous earth biocarrier contained in upflow Plexiglas columns. The columns were aerated, maintained at pH 7.0-8.0, incubated at 25 degrees C, supplemented with NH4NO3 (50 mg/L), and exposed to glyphosate process wastes pumped upflow through the biocarrier. Glyphosate degradation to aminomethylphosphonic acid was initially > 96% for 21 days of operation at flows yielding hydraulic residence times (HRTs) as short as 42 min. Higher flow rate studies showed > 98% removal of 50 mg glyphosate/L from the waste stream could be achieved at a HRT of 23 min. Glyphosate removal of > 99% at a 37-min HRT was achieved under similar conditions with a column inoculated with a pure culture of Pseudomonas sp. strain LBr, a bacterium known to have high glyphosate-degrading activity. After acid shocking (pH 2.8 for 18 h) of a column of immobilized bacteria, glyphosate-degrading activity was regained within 4 days without reinoculation. Although microbial growth and glyphosate degradation were not maintained under low organic nutrient conditions in the laboratory, the low levels of degradable carbon (45-94 mg/L) in the industrial effluent were sufficient to support prolonged glyphosate-degrading activity. The results demonstrated that immobilized bacteria technology is effective in removing low levels of glyphosate in high-volume liquid waste streams.  相似文献   

17.
Summary Cross-polarization/magic angle spinning (CP/MAS) 13C solid-state-NMR was utilized to evaluate the extent of hydrolysis and structure of starch in enzymatically digested injection molded starch-polyethylene-co-acrylic acid (EAA)-polyethylene (PE) plastic composites. It is a simple, quick and semi-quantitative method. Results are in agreement with reducing sugar assays routinely used for measuring starch degradation.  相似文献   

18.
Summary Starch-containing plastic films exposed to a natural freshwater environment were shown previously to undergo significant depletion of the starch components. The culture media from a number of starch-hydrolyzing bacteria that had been collected from larvae attached to these films were found to have -amylase activity. Levels of amylase activity increased with culture age. Most of the activity was found to be cell-associated, and correlated on starch zymograms with an activity at about 55 kDa, in the >50% ammonium sulfate fractionation sample. The pH optimum for these amylases was just at or slightly above neutral, with a temperature optimum of about 65°C.  相似文献   

19.
In this study, we attempted two investigational systems: one is treatment of sago industry effluent by aerobic bacterial consortium and the other is impact of treated and untreated effluent on seed germination. For the treatment system, the starch degrading bacteria were isolated from sago industry effluent and effluent contaminated soil. The genera, Alcaligenes, Bacillus and Corynebacterium were found efficient in starch degradation. The selected isolates were tested for their efficiency on the degradation of starch both in Mineral Salts Medium (MSM) and in sago industry effluent. About 85% of the starch was degraded in MSM by a bacterial consortium composed of Alcaligenes, Bacillus and Corynebacterium, whereas in effluent the degradation of starch was only 63%. The physico-chemical properties such as electrical conductivity, total solids, suspended solids, dissolved solids, BOD, COD, nitrogen and phosphate were found decreased in effluent after 72 h. The pH of the effluent was relatively increased from 3 to 6.7. The study of seed germination (maize and green gram) was carried out at 25, 50, 75 and 100% concentrations of treated and untreated effluent using soil sowing method. Shoot length, root length, fresh weight, dry weight and chlorophyll content showed an increase when treated effluent was tested whereas a decrease of growth was noticed in untreated effluent tested seedlings. The results revealed that effluent treated by aerobic microorganisms has no negative impact on the seed germination and can be effectively used for irrigation.  相似文献   

20.
This study aimed at assessing the impact of four barley forms on total tract apparent digestibility of dietary fibre in horses fed a large amount of starch in the morning meal (0.27% BW). Processed barley forms had a greater pre-caecal starch digestibility than the whole form. Based on this result, we hypothesised that using barley-processing methods would limit the potential dumping of undegraded starch in the hindgut of horses and, consequently, the potential negative effect on fibre degradation in the hindgut. In a 4×4 latin square design, four mature geldings fitted with a right ventral colon-fistula were fed a meadow hay : concentrate (62 : 38; dry matter (DM) basis) diet at 1.7% BW. The concentrate was made of 80% barley distributed either as whole grain or as processed forms: 2.5 mm ground, pelleted or steam-flaked. For each period, total tract apparent digestibilities of DM, NDF and ADF were determined over 3 consecutive days by total faecal collection, whereas pH, volatile fatty acids (VFA) concentrations and cultural functional bacteria counts (total anaerobic, cellulolytic bacteria, lactic acid producers, amylolytic bacteria and lactic acid utilisers) in colonic content were evaluated on 1 day 4 h after the morning meal. Total tract apparent digestibility of DM and dietary fibre was influenced (P<0.05) by barley form. Diets including thermo-mechanically treated barley forms led to a higher (P<0.05) total tract apparent digestibility of NDF than those constituted of ground barley and also led to a greater (P<0.05) total tract apparent digestibility of ADF than those made of whole or ground barley forms. However, no significant difference was observed in colonic pH, VFA concentrations and cultural bacteria concentrations. Owing to a high starch supply in the morning meal, the concentration of the functional bacteria in the colonic content averaged 7.8 log CFU/ml, 5.9 NPM/ml, 6.9 and 7.3 CFU/ml for total anaerobic, cellulolytic, amylolytic and lactic acid-utilising bacteria, respectively. Consequently, providing horses with pelleted or steam-flaked instead of ground barley forms may limit the negative impact of starch on fibre digestibility in horses fed a high level of starch in the morning meal (0.27% BW). Moreover, the fibre-to-starch ratio fed in this experiment did not cause any digestive upset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号