首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wobble base of Escherichia coli elongator tRNA(Met) is modified to N(4)-acetylcytidine (ac(4)C), which is thought to ensure the precise recognition of the AUG codon by preventing misreading of near-cognate AUA codon. By employing genome-wide screen of uncharacterized genes in Escherichia coli ('ribonucleome analysis'), we found the ypfI gene, which we named tmcA (tRNA(Met) cytidine acetyltransferase), to be responsible for ac(4)C formation. TmcA is an enzyme that contains a Walker-type ATPase domain in its N-terminal region and an N-acetyltransferase domain in its C-terminal region. Recombinant TmcA specifically acetylated the wobble base of E. coli elongator tRNA(Met) by utilizing acetyl-coenzyme A (CoA) and ATP (or GTP). ATP/GTP hydrolysis by TmcA is stimulated in the presence of acetyl-CoA and tRNA(Met). A mutation study revealed that E. coli TmcA strictly discriminates elongator tRNA(Met) from the structurally similar tRNA(Ile) by mainly recognizing the C27-G43 pair in the anticodon stem. Our findings reveal an elaborate mechanism embedded in tRNA(Met) and tRNA(Ile) for the accurate decoding of AUA/AUG codons on the basis of the recognition of wobble bases by the respective RNA-modifying enzymes.  相似文献   

2.
A minor species of isoleucine tRNA (tRNA(minor Ile)) specific to the codon AUA has been isolated from Escherichia coli B and a modified nucleoside N+ has been found in the first position of the anticodon (Harada, F., and Nishimura, S. (1974) Biochemistry 13, 300-307). In the present study, tRNA(minor Ile)) was purified from E. coli A19, and nucleoside N+ was prepared, by high-performance liquid chromatography, in an amount (0.6) A260 units) sufficient for the determination of chemical structures. By 400 MHz 1H NMR analysis, nucleoside N+ was found to have a pyrimidine moiety and a lysine moiety, the epsilon amino group of which was involved in the linkage between these two moieties. From the NMR analysis together with mass spectrometry, the structure of nucleoside N+ was determined as 4-amino-2-(N6-lysino)-1-(beta-D-ribofuranosyl)pyrimidinium ("lysidine"), which was confirmed by chemical synthesis. Lysidine is a novel type of modified cytidine with a lysine moiety and has one positive charge. Probably because of such a unique structure, lysidine in the first position of anticodon recognizes adenosine but not guanosine in the third position of codon.  相似文献   

3.
A novel modified nucleoside located in the first position of the anticodon of yeast tRNAVal2a was isolated and its chemical structure was characterized as 5-carbamoylmethyluridine by means of ultraviolet absorption spectrum, mass spectrum, and nuclear magnetic resonance spectrum.  相似文献   

4.
The conformational characteristics of a modified nucleoside 4-acetylcytidine (ac4C) was analyzed by proton nuclear magnetic resonance spectroscopy. This nucleoside was found to take the C3'-endo form predominantly. The enthalpy difference between the C2'-endo form and the C3'-endo form of the ribose moiety of ac4C was determined and 4-acetylation was found to stabilize the C3'-endo form further by 0.83 kcal.mol-1. This conformational characteristics of ac4C is probably important for the correct codon recognition and the stability of the tertiary structure of tRNA molecule.  相似文献   

5.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In bacteria, the free amino group of the methionylated initiator tRNA is specifically modified by the addition of a formyl group. The functional relevance of such a formylation for the initiation of translation is not yet precisely understood. Advantage was taken here of the availability of the fmt gene, encoding the Escherichia coli Met-tRNA(fMet) formyltransferase, to measure the influence of variations in the level of formyltransferase activity on the involvement of various mutant tRNA(fMet) and tRNA(mMet) species in either initiation or elongation in vivo. The data obtained established that formylation plays a dual role, firstly, by dictating tRNA(fMet) to engage in the initiation of translation, and secondly, by preventing the misappropriation of this tRNA by the elongation apparatus. The importance of formylation in the initiator identity of tRNA(fMet) was further shown by the demonstration that elongator tRNA(fMet) may be used in initiation and no longer in elongation, provided that it is mutated into a formylatable species and is given the three G.C base pairs characteristic of the anticodon stem of initiator tRNAs.  相似文献   

7.
8.
An unknown nucleoside in the first position of the anticodon of Torulopsis utilis tRNAPro has been isolated. The UV, 1H NMR and secondary ion mass spectra indicated that this nucleoside is a uridine derivative, 5-carbamoylmethyluridine. The structure was completely established by comparison of the instrumental analysis results and chromatographic behavior of the isolated nucleoside with those of a synthetic sample.  相似文献   

9.
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.  相似文献   

10.
11.
A stem and loop RNA domain carrying the methionine anticodon (CAU) was designed from the tRNA(fMet) sequence and produced in vitro. This domain makes a complex with methionyl-tRNA synthetase (Kd = 38(+/- 5) microM; 25 degrees C, pH 7.6, 7 mM-MgCl2). The formation of this complex is dependent on the presence of the cognate CAU anticodon sequence. Recognition of this RNA domain is abolished by a methionyl-tRNA synthetase mutation known to alter the binding of tRNA(Met).  相似文献   

12.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

13.
14.
Photoinduced covalent cross-linking has been used to identify a common surface of four methionine-accepting tRNAs which interact specifically with the Escherichia coli methionine:tRNA ligase (EC 6.1.1.10). tRNA--ligase mixtures were irradiated, and the covalently linked complexes were isolated and digested with T1 RNase (Schimmel & Budzik, 1977). The fragments lost from the elution profile of the T1 RNase digest were considered to have been cross-linked to the protein and therefore in intimate contact with the enzyme. Only specific cognate tRNA--ligase pairs produce covalently linked complexes. The four substrate tRNAs used in this study have substantially different sequences, but all showed a common cross-linking pattern, supporting the view that the sites cross-linked to the enzyme reflect the functionally common contact surface rather than particularly photoreactivity regions of tRNA. The cross-linked contact surface is comprised of three regions: (1) the narrow groove of the anticodon stem and its extension into the anticodon loop; (2) the 3' terminal residues; and (3) the 3' side of the "T arm". Unlike previous studies with other tRNAs, the D arm is not involved and significant radiation damage is suffered by the tRNA which must be taken into account in the analysis. The results are consistent with and complement chemical modification studies [Schulman, L. H., & Pelka, H. (1977) Biochemistry 16, 4256].  相似文献   

15.
16.
17.
A modified uridine in the anticodon of E. coli tRNA I Tyr su + oc.   总被引:5,自引:1,他引:4       下载免费PDF全文
The anticodon of an ochre-suppressing derivative of E. coli tRNA I Tyr, previously identified as UUA, can contain a modified uridine (U+) in the first position. The novel modified nucleotide has been identified by two-dimensional thin layer chromatography following RNase T2 digestion of anticodon-containing fragments. Up+ is found in less than stoichiometric molar yields in preparations of tRNA I Tyr su + oc. The electrophoretic mobility of Up+ is the same as Up at pH 3.5 and pH 7.5. U+ probably does not contain sulfur since it cannot be labeled with 35S in vivo incorporation experiments.  相似文献   

18.
19.
20.
Cytidine in the anticodon second position (position 35) and G or U in position 36 of tRNAArg are required for aminoacylation by arginyl-tRNA synthetase (ArgRS) from Escherichia coli. Nevertheless, an arginine-accepting amber suppressor tRNA with a CUA anticodon (FTOR1Delta26) exhibits suppression activity in vivo [McClain, W.H. & Foss, K. (1988) Science, 241, 1804-1807]. By an in vitro kinetic study with mutagenized tRNAs, we showed that the arginylation of FTOR1Delta26 involves C34 and U35, and that U35 can be replaced by G without affecting the activity. Thus, the positioning of the essential nucleotides for the arginylation is shifted to the 5' side, by one residue, in the suppressor tRNAArg. We found that the shifted positioning does not depend on the tRNA sequence outside the anticodon. Furthermore, by a genetic method, we isolated a mutant ArgRS that aminoacylates FTOR1Delta26 more efficiently than the wild-type ArgRS. The isolated mutant has mutations at two nonsurface amino-acid residues that interact with each other near the anticodon-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号