首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Based on a qualitative analysis of ODE systems, the dynamic properties of alternative predator-prey models with predator-dependent functional response have been compared in order to study the role that predator interference plays in the stabilisation of trophic systems. The models considered for interference have different mathematical expressions and different conceptual foundations. Despite these differences, they give essentially the same qualitative results: when interference is low, increasing it has a positive effect on asymptotic stability and thus on the resilience of the biological system. When it is high, it is the contrary (with logistic prey growth, increasing the interference parameter ensures stability but leads to very small predator densities). Possible consequences on the evolution of the interference level in real ecosystems are discussed.  相似文献   

2.
Reservoir models play an important role in representing fluxes of matter and energy in ecological systems and are the basis of most models in biogeochemistry. These models are commonly used to study the effects of environmental change on the cycling of biogeochemical elements and to predict potential transitions of ecosystems to alternative states. To study critical regime changes of time-dependent, externally forced biogeochemical systems, we analyze the behavior of reservoir models typical for element cycling (e.g., terrestrial carbon cycle) with respect to time-varying signals by applying the mathematical concept of input to state stability (ISS). In particular, we discuss ISS as a generalization of preceding stability notions for non-autonomous, non-linear reservoir models represented by systems of ordinary differential equations explicitly dependent on time and a time-varying input signal. We also show how ISS enhances existing stability concepts, previously only available for linear time variant (LTV) systems, to a tool applicable also in the non-linear case.  相似文献   

3.
Summary The major objective of this paper is to propose a new decomposition-aggregation framework for stability analysis of Lotka-Volterra equations employing the concept of vector Liapunov functions. Both the disjoint and the overlapping decompositions are introduced to increase flexibility in constructing Liapunov functions for the overall system. Our second objective is to consider the Lotka-Volterra equations under structural perturbations, and derive conditions under which a positive equilibrium is connectively stable. Both objectives of this paper are directed towards a better understanding of the intricate interplay between stability and complexity in the context of robustness of model ecosystems represented by Lotka-Volterra equations. Only stability of equilibria in models with constant parameters is considered here. Nonequilibrium analysis of models with nonlinear time-varying parameters is the subject of a companion paper.Research supported by U.S. Department of Energy under the Contract EC-77-S-03-1493.On leave from Kobe University, Kobe, Japan.  相似文献   

4.
The stability of benthic ecosystems   总被引:1,自引:0,他引:1  
Physicists have two conceptions of the stability of systems: global and neighbourhood stability. Global stability corresponds to the idea of successional changes leading to climax communities. Yet, neighbourhood stability is shown to be a more realistic model for changes in dominance of marine benthic sediment-living communities. The factors inducing state changes in dominance pattern were shown to be principally biological interactions. In order to model the stability of benthic ecosystems, much more attention must be given to natural history-type studies of biological interactions. Furthermore, mathematical models usually assume that the systems are globally stable. Should neighbourhood stability prove to be the rule for benthic systems then realistic models of such systems will be an order of magnitude more complex.  相似文献   

5.
In this paper, we formulate a nonlinear system of difference equations that models the three-stage life cycle of the deer tick over four seasons. We study the effect of seasonality on the stability and oscillatory behavior of the tick population by comparing analytically the seasonal model with a non-seasonal one. The analysis of the models reveals the existence of two equilibrium points. We discuss the necessary and sufficient conditions for local asymptotic stability of the equilibria and analyze the boundedness and oscillatory behavior of the solutions. A main result of the mathematical analysis is that seasonality in the life cycle of the deer tick can have a positive effect, in the sense that it increases the stability of the system. It is also shown that for some combination of parameters within the stability region, perturbations will result in a return to the equilibrium through transient oscillations. The models are used to explore the biological consequences of parameter variations reflecting expected environmental changes.  相似文献   

6.
An analysis of local behavior is made of two nonlinear models which incorporate both an induction or positive feedback control mechanism and a repression or negative feedback control mechanism. The systems of differential equations with delays are linearized about their equilibria. The related characteristic equations which are exponential polynomials are studied to determine the local stability of the models. Computer studies are included to show the range of stability for different parameter values, and the biological significance is discussed briefly.  相似文献   

7.
Summary The relationship between the deterministic stability of nonlinear ecological models and the properties of the stochastic model obtained by adding weak random perturbations is studied. It is shown that the expected escape time for the stochastic model from a bounded region with nonsingular boundary is determined by a Liapunov function for the nonlinear deterministic model. This connection between stochastic and deterministic models brings together various notions of persistence and vulnerability of ecosystems as defined for deterministically perturbed or randomly perturbed models.  相似文献   

8.
Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems.  相似文献   

9.
This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori non-negativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.  相似文献   

10.
The uninvadability concept, that was originally introduced through static comparisons of individual fitness in resident-mutant systems for a single species, is developed for multi-species models with frequency-dependent fitness by extending its equivalent single-species dynamic characterization. This multi-species definition is then reinterpreted in terms of individual fitness functions based on intra and interspecific interactions. The resultant concept is discussed in relation to that of an N-species ESS (evolutionarily stable strategy) and to dynamic stability of monomorphic and polymorphic evolutionary systems.  相似文献   

11.
Stability, bifurcation, and dynamic behavior, investigated here in discrete, nonlinear, age-structured models, can be complex; however, restrictions imposed by compensatory mechanisms can limit the behavioral spectrum of a dynamic system. These limitations in transitional behavior of compensatory models are a focal point of this article. Although there is a tendency for compensatory models to be stable, we demonstrate that stability in compensatory systems does not always occur; for example, equilibria arising through a bifurcation can be initially unstable. Results concerning existence and uniqueness of equilibria, stability of the equilibria, and boundedness of solutions suggest that "compensatory" systems might not be compensatory in the literal sense.  相似文献   

12.
Equilibrium points for nonlinear compartmental models.   总被引:1,自引:0,他引:1  
Equilibrium points for nonlinear autonomous compartmental models with constant input are discussed. Upper and lower bounds for the steady states are derived. Theorems guaranteeing existence and uniqueness of equilibrium points for a large collection of system are proved. New information relating to mean residence times is developed. Asymptotic results and a section on stability are included. A recursive process is discussed that generates iterates that converge to steady states for certain types of models. An interesting range of models are included as examples. An attempt is made to provide general qualitative theory for such nonlinear compartmental systems.  相似文献   

13.
Modern methods of high-throughput molecular biology render it possible to generate time series of metabolite concentrations and the expression of genes and proteins in vivo. These time profiles contain valuable information about the structure and dynamics of the underlying biological system. This information is implicit and its extraction is a challenging but ultimately very rewarding task for the mathematical modeler. Using a well-suited modeling framework, such as Biochemical Systems Theory (BST), it is possible to formulate the extraction of information as an inverse problem that in principle may be solved with a genetic algorithm or nonlinear regression. However, two types of issues associated with this inverse problem make the extraction task difficult. One type pertains to the algorithmic difficulties encountered in nonlinear regressions with moderate and large systems. The other type is of an entirely different nature. It is a consequence of assumptions that are often taken for granted in the design and analysis of mathematical models of biological systems and that need to be revisited in the context of inverse analyses. The article describes the extraction process and some of its challenges and proposes partial solutions.  相似文献   

14.
本文首先建立了相应于Lamula与Griffin的凝血动力系统瀑布模式的非线性数学模型.并使用分叉方法较深入地分析了该系统的定态平衡解与动态解的稳定性与全局吸引子.通过动力学分析,我们从理论上证明了存在外源性路径启动的触发阈值及瀑布机制达到终态的细节:趋于一个全局吸引子.  相似文献   

15.
Our planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly exceeding the five mass extinctions in the fossil record. Nevertheless, our lives are strongly based on services provided by ecosystems, thus the responses to global change of our natural heritage are of immediate concern. Understanding the relationship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human growth and the conservation of all the natural services that ecosystems provide. Mathematical network models can be used to simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand ecosystems propensity of returning to its functioning regime after a stress or a perturbation. The use of ecological-network models to study the relationship between complexity and stability of natural ecosystems is the focus of this review. The concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting definitions of complexity and stability. The literature on the relationship between complexity and stability in different types of models and in real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. The summary of the importance of this line of research for the successful management and conservation of biodiversity and ecosystem services concludes the review.  相似文献   

16.
The paper is devoted to the study of discrete time and continuous space models with nonlocal resource competition and periodic boundary conditions. We consider generalizations of logistic and Ricker's equations as intraspecific resource competition models with symmetric nonlocal dispersal and interaction terms. Both interaction and dispersal are modeled using convolution integrals, each of which has a parameter describing the range of nonlocality. It is shown that the spatially homogeneous equilibrium of these models becomes unstable for some kernel functions and parameter values by performing a linear stability analysis. To be able to further analyze the behavior of solutions to the models near the stability boundary, weakly nonlinear analysis, a well-known method for continuous time systems, is employed. We obtain Stuart–Landau type equations and give their parameters in terms of Fourier transforms of the kernels. This analysis allows us to study the change in amplitudes of the solutions with respect to ranges of nonlocalities of two symmetric kernel functions. Our calculations indicate that supercritical bifurcations occur near stability boundary for uniform kernel functions. We also verify these results numerically for both models.  相似文献   

17.
利用牧草生长-消费模型优化草场放牧方案   总被引:1,自引:0,他引:1  
从理论上探讨了草场生态系统牧草的生长过程和消费过程,采用数学模型方法模拟了两者的动态变化规律,分析了两者在草场生态系统生态平衡中的作用机制.运用牧草的生长和消费模型模拟特定生产周期内草场生态系统的累积牧草消费量,提出优化的草场放牧方案。为实际生产提供参考依据.  相似文献   

18.
本文研究了一类具连续时滞的三种群互助模型,利用上、下解方法及相应的单调迭代方法,获得了该系统存在唯一正常数平衡态及该平衡态是全局渐近稳定的结论,为讨论时滞三种群模型提供了一种有效方法,所得结果也适用于二种群互助模型及不含时滞和扩散项的互助模型,因而推广了已有的一些结论.  相似文献   

19.
The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator‐prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random‐type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average‐network topology. They make clear that the classic complexity‐instability paradox is essentially an artificial interaction‐strength result.  相似文献   

20.
This paper introduces a mathematical framework for modelling genome expression and regulation. Starting with a philosophical foundation, causation is identified as the principle of explanation of change in the realm of matter. Causation is, therefore, a relationship, not between components, but between changes of states of a system. We subsequently view genome expression (formerly known as 'gene expression') as a dynamic process and model aspects of it as dynamic systems using methodologies developed within the areas of systems and control theory. We begin with the possibly most abstract but general formulation in the setting of category theory. The class of models realised are state-space models, input--output models, autoregressive models or automata. We find that a number of proposed 'gene network' models are, therefore, included in the framework presented here. The conceptual framework that integrates all of these models defines a dynamic system as a family of expression profiles. It becomes apparent that the concept of a 'gene' is less appropriate when considering mathematical models of genome expression and regulation. The main claim of this paper is that we should treat (model) the organisation and regulation of genetic pathways as what they are: dynamic systems. Microarray technology allows us to generate large sets of time series data and is, therefore, discussed with regard to its use in mathematical modelling of gene expression and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号