首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. To date, nearly all piRNA studies have been conducted in model organisms and little is known about piRNA diversity, target specificity and biological function in human.

Results

Here we performed high-throughput sequencing of piRNAs from three human adult testis samples. We found that more than 81% of the ~17 million putative piRNAs mapped to ~6,000 piRNA-producing genomic clusters using a relaxed definition of clusters. A set of human protein-coding genes produces a relatively large amount of putative piRNAs from their 3’UTRs, and are significantly enriched for certain biological processes, suggestive of non-random sampling by the piRNA biogenesis machinery. Up to 16% of putative piRNAs mapped to a few hundred annotated long non-coding RNA (lncRNA) genes, suggesting that some lncRNA genes can act as piRNA precursors. Among major ME families, young families of LTR and endogenous retroviruses have a greater association with putative piRNAs than other MEs. In addition, piRNAs preferentially mapped to specific regions in the consensus sequences of several ME (sub)families and some piRNA mapping peaks showed patterns consistent with the “ping-pong” cycle of piRNA targeting and amplification.

Conclusions

Overall our data provide a comprehensive analysis and improved annotation of human piRNAs in adult human testes and shed new light into the relationship of piRNAs with protein-coding genes, lncRNAs, and mobile genetic elements in human.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-545) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
In Drosophila, PIWI proteins and bound PIWI‐interacting RNAs (piRNAs) form the core of a small RNA‐mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target‐dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi‐mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de‐silencing, to a collapse in piRNA levels and to a failure in Piwi‐nuclear accumulation. We show that Armitage and Yb interact physically and co‐localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis.  相似文献   

6.
Identification of piRNAs in the central nervous system   总被引:1,自引:0,他引:1  
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs generated by a conserved pathway. Their most widely studied function involves restricting transposable elements, particularly in the germline, where piRNAs are highly abundant. Increasingly, another set of piRNAs derived from intergenic regions appears to have a role in the regulation of mRNA from early embryos and gonads. We report a more widespread expression of a limited set of piRNAs and particularly focus on their expression in the hippocampus. Deep sequencing of extracted RNA from the mouse hippocampus revealed a set of small RNAs in the size range of piRNAs. These were confirmed by their presence in the piRNA database as well as coimmunoprecipitation with MIWI. Their expression was validated by Northern blot and in situ hybridization in cultured hippocampal neurons, where signal from one piRNA extended to the dendritic compartment. Antisense suppression of this piRNA suggested a role in spine morphogenesis. Possible targets include genes, which control spine shape by a distinctive mechanism in comparison to microRNAs.  相似文献   

7.
8.
9.
10.
Genetic studies and large-scale sequencing experiments have revealed that the PIWI subfamily proteins and PIWI-interacting RNAs (piRNAs) play an important role in germ line development and transposon control. Biochemical studies in vitro have greatly contributed to the understanding of small interfering RNA (siRNA) and microRNA (miRNA) pathways. However, in vitro analyses of the piRNA pathway have been thus far quite challenging, because their expression is largely restricted to the germ line. Here we report that Bombyx mori ovary-derived cultured cell line, BmN4, endogenously expresses two PIWI subfamily proteins, silkworm Piwi (Siwi) and Ago3 (BmAgo3), and piRNAs associated with them. Siwi-bound piRNAs have a strong bias for uridine at their 5′ end and BmAgo3-bound piRNAs are enriched for adenine at position 10. In addition, Siwi preferentially binds antisense piRNAs, whereas BmAgo3 binds sense piRNAs. Moreover, we identified many pairs in which Siwi-bound antisense and BmAgo3-bound sense piRNAs are overlapped by precisely 10 nt at their 5′ ends. These signatures are known to be important for secondary piRNA biogenesis in other organisms. Taken together, BmN4 is a unique cell line in which both primary and secondary steps of piRNA biogenesis pathways are active. This cell line would provide useful tools for analysis of piRNA biogenesis and function.  相似文献   

11.
Argonaute/Piwi proteins can regulate gene expression via RNA degradation and translational regulation using small RNAs as guides. They also promote the establishment of suppressive epigenetic marks on repeat sequences in diverse organisms. In mice, the nuclear Piwi protein MIWI2 and Piwi‐interacting RNAs (piRNAs) are required for DNA methylation of retrotransposon sequences and some other sequences. However, its underlying molecular mechanisms remain unclear. Here, we show that piRNA‐dependent regions are transcribed at the stage when piRNA‐mediated DNA methylation takes place. MIWI2 specifically interacts with RNAs from these regions. In addition, we generated mice with deletion of a retrotransposon sequence either in a representative piRNA‐dependent region or in a piRNA cluster. Both deleted regions were required for the establishment of DNA methylation of the piRNA‐dependent region, indicating that piRNAs determine the target specificity of MIWI2‐mediated DNA methylation. Our results indicate that MIWI2 affects the chromatin state through base‐pairing between piRNAs and nascent RNAs, as observed in other organisms possessing small RNA‐mediated epigenetic regulation.  相似文献   

12.
13.
14.
15.
16.
piRNA的生物学功能   总被引:3,自引:0,他引:3  
非编码小RNA(non-coding RNA, ncRNA)主要有siRNA(small interfering RNA)、miRNA(microRNA)和piRNA (piwi-interacting RNA)三类,其中piRNA是近年来新发现的一类小RNA分子,特异性地同Argonuat蛋白家族中的Piwi亚家族蛋白结合,主要在生殖细胞系中表达,对维持生殖系DNA完整、抑制转座子转录、抑制翻译、参与异染色质的形成、执行表观遗传调控和生殖细胞发生等均有重要作用.piRNA基因几乎遍布于整个基因组,但呈高度不连续性分布,大部分定位于20~90 kb的染色体基因簇上.与来自于双链RNA的siRNA和发卡结构miRNA不同之处是piRNA来自长单链RNA前体,或者是两股非重叠的反向转录前体,其生成与Dicer无关.作为调节RNA(riboregulator),piRNA和miRNA可能在动物起源早期就已经出现了,帮助生命进入了一个多细胞动物的时代,产生了今天的生物体复杂性和多样性.piRNA成为ncRNA的研究热点,进展飞快,有很多综述及时介绍piRNA的研究进展,本文结合siRNA、miRNA的特点介绍了关于piRNA的形成机制和作用的最新研究成果.  相似文献   

17.
PIWI-interacting RNAs (piRNAs) are a new class of small RNAs specifically expressed in male germ cells. It is known to bind to PIWI class of Argonaute proteins, Mili and Miwi. To help to decipher the mechanism of piRNA function, here, we report a real time PCR-based multiplex assay for piRNA expression. Firstly, we showed that the assay specifically detects piRNA expression in adult testis, consistent with the Northern blot result. The method we developed can simultaneously detect at least eight piRNAs using only 10 pg total RNA, which is equivalent to the RNA present in a single cell. This is five to six order magnitude more sensitive than corresponding Northern blot assays. Finally we used this assay to analyze eight piRNAs expression in mouse primordial germ cells (PGCs) in genital ridges from E12.5, at the time when piRNA-binding protein Mili starts to be detected in PGCs. This multiplex piRNA assay can be further expanded to assay a few hundred of piRNAs simultaneously from as little as total RNA from a single cell. This approach will help to understand the mechanism and function of piRNAs during germ cell development.  相似文献   

18.
19.
piRNAs are a class of noncoding RNAs that perform functions in epigenetic regulation and silencing of transposable elements, a mechanism conserved among most mammals. At present, there are more than 30,000 known piRNAs in humans, of which more than 80% are derived from intergenic regions, and approximately 20% are derived from the introns and exons of pre-mRNAs. It was observed that the expression of the piRNA profile is specific in several organs, suggesting that they play functional roles in different tissues. In addition, some studies suggest that changes in regions that encode piRNAs may have an impact on their function. To evaluate the conservation of these regions and explore the existence of a seed region, SNP and INDEL variant rates were investigated in several genomic regions and compared to piRNA region variant rates. Thus, data analysis, data collection, cleaning, treatment, and exploration were implemented using the R programming language with the help of the RStudio platform. We found that piRNA regions are highly conserved after considering INDELs and do not seem to present an identifiable seed region after considering SNPs and INDEL variants. These findings may contribute to future studies attempting to determine how polymorphisms in piRNA regions can impact diseases.  相似文献   

20.
piRNA(Piwi-interacting RNA)是从哺乳动物生殖细胞中分离得到的一类长度约为30nt的小RNA,并且这种小RNA与PIWI蛋白家族成员相结合才能发挥它的调控作用。目前,越来越多的文献表明piRNA在生殖细胞的生长发育中的调控是由于Piwi-piRNA复合物引起的基因沉默导致的,但由于对piRNA的研究尚处于初级阶段,它的一些具体的功能和生源论尚在研究当中。本文主要综述了piRNA的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号