首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were recovered from deep sequencing data of small RNA libraries of pumpkin and squash. A total of six novel miRNAs that were not reported before were found to have precursors with reliable fold-back structures and hence considered novel and were designated as cuc_nov_miRNAs. A set of five conserved, six novel miRNAs, and five uncharacterized small RNAs from the deep sequencing data were profiled for their dynamic regulation using qPCR. The miRNAs were evaluated for differential regulation across the tissues among four diverse cucurbit species, including pumpkin and squash (Cucurbita moschata Duch. Ex Poir. and Cucurbita pepo L.), bitter melon (Momordica charantia L.), and Luffa (Loofah) (Luffa acutangula Roxb.). Expression analysis revealed differential regulation of various miRNAs in leaf, stem, and fruit tissues. Importantly, differences in the expression levels were also found in the leaves and fruits of closely related C. moschata and C. pepo. Comparative miRNA profiling and expression analysis in four cucurbits led to identification of conserved miRNAs in cucurbits. Predicted targets for two of the conserved miRNAs suggested miRNAs are involved in regulating similar biological mechanisms in various species of cucurbits.  相似文献   

6.
7.
Salt stress is a global environmental problem that affects plant growth and development. Paulownia fortunei is an adaptable and fast-growing deciduous tree native to China that is environmentally and economically important. MicroRNAs (miRNAs) play important regulatory roles in growth, development, and stress responses in plants. MiRNAs that respond to biotic stresses have been identified; however, how miRNAs in P. fortunei respond to salt stress has not yet been reported. To identify salt-stress-responsive miRNAs and predict their target genes, four small RNA and four degradome libraries were constructed from NaCl-treated and NaCl-free leaves of P. fortunei seedlings. The results indicated that salt stress had different physiological effects on diploid and tetraploid P. fortunei. We detected 53 conserved miRNAs belonging to 17 miRNA families and 134 novel miRNAs in P. fortunei. Comparing their expression levels in diploid and tetraploid P. fortunei, we found 10 conserved and 10 novel miRNAs that were significantly differentially expressed under salt treatment, among them eight were identified as miRNAs probably associated with higher salt tolerance in tetraploid P. fortunei than in diploid P. fortunei. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the target genes of the conserved and novel miRNAs. The expressions of 10 differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on P. fortunei miRNAs and their target genes under salt stress. The results provided information at the physiological and molecular levels for further research into the response mechanisms of P. fortunei to salt stress.  相似文献   

8.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the most important pathogens of silkworm. MicroRNAs (miRNAs) have been demonstrated to play key roles in regulating host-pathogen interaction. However, there are limited reports on the miRNAs expression profiles during insect pathogen challenges. In this study, four small RNA libraries from BmCPV-infected midgut of silkworm at 72 h post-inoculation and 96 h post-inoculation and their corresponding control midguts were constructed and deep sequenced. A total of 316 known miRNAs (including miRNA*) and 90 novel miRNAs were identified. Fifty-eight miRNAs displayed significant differential expression between the infected and normal midgut (P value < = 0.01 and fold change > = 2.0 or < = 0.5), among which ten differentially expressed miRNA were validated by qRT-PCR method. Further bioinformatics analysis of predicted target genes of differentially expressed miRNAs showed that the miRNA targets were involved in stimulus and immune system process in silkworm.  相似文献   

9.
10.
11.
12.
13.
14.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
  • Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses.
  • In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer.
  • We identified 161 potential miRNAs representing 42 families, including monocot/tissue‐specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars.
  • Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT‐PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA–mRNA target pairing using RNA ligase‐mediated 5′ Rapid Amplification of cDNA Ends (5′RLM‐RACE) PCR.
  相似文献   

17.
18.
MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (Solanum melongena L.). To identify miRNAs in eggplant and their response to Verticillium dahliae infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.  相似文献   

19.
Plant microRNAs (miRNAs) have been shown to play critical roles in plant development. In this study, we employed small RNA combined with degradome sequencing to survey development-related miRNAs and their validated targets during wheat grain development. A total of 186 known miRNAs and 37 novel miRNAs were identified in four small RNA libraries. Moreover, a miRNA-like long hairpin locus was first identified to produce 21~22-nt phased siRNAs that act in trans to cleave target mRNAs. A comparison of the miRNAomes revealed that 55 miRNA families were differentially expressed during the grain development. Predicted and validated targets of these development-related miRNAs are involved in different cellular responses and metabolic processes including cell proliferation, auxin signaling, nutrient metabolism and gene expression. This study provides insight into the complex roles of miRNAs and their targets in regulating wheat grain development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号