首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G + C lactic acid bacteria and two high G + C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes. Our studies reveal unique characteristics of the lactic acid bacteria such as the universal presence of genes encoding mechanosensitive channels, competence systems and large numbers of sugar transporters of the phosphotransferase system. The analyses lead to important physiological predictions regarding the preferred signalling and metabolic activities of these industrially important bacteria.  相似文献   

2.
Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium.  相似文献   

3.
Survival of microorganisms in natural environments is favored by the capacity to produce compounds toxic to competing organisms and the ability to resist the effects of such toxic compounds. Both factors contribute to a competitive advantage of organisms in ecosystems. All organisms have evolved active transport mechanisms by which endogenous and exogenous toxicants can be secreted. Two major classes of transporter proteins are the ATP-binding cassette (ABC) and the major facilitator superfamily (MFS) transporters. Members of both classes can have broad and overlapping substrate specificities for natural toxic compounds and can be regarded as a "first-line defense barrier" in survival mechanisms. In plant pathogens, these transporters can play an essential role in protection against plant defense compounds during pathogenesis. Also, some transporters actively secrete host-specific and non-host-specific toxins. Remarkably, ABC and MFS transporters can also play a major role in fungicide sensitivity and resistance. Their role in multidrug resistance of Aspergillus nidulans, Candida albicans, and Saccharomyces cerevisiae to azoles and other fungitoxic compounds is well established. Knowledge of ABC and MFS transporters opens possibilities of developing novel strategies for controlling plant diseases, either by modulation of transporter activity or by transgenic expression of transporter genes in plants.  相似文献   

4.
The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their proper functioning. Several recent studies demonstrate that fluctuations in membrane lipid composition affect the localization and proper functioning of the MDR efflux pump proteins. Interestingly, the efflux pumps of the ABC superfamily are particularly susceptible to imbalances in membrane-raft lipid constituents. This review focuses on the importance of the membrane environment in functioning of the drug-efflux pumps and explores a correlation between MDR and membrane lipid homoeostasis.  相似文献   

5.
BACKGROUND: Both intrinsic and acquired multidrug resistance play an important role in the insurgence of tuberculosis. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors that block the multidrug transporter and allow traditional antibiotics to be effective. MATERIALS AND METHODS: We have undertaken the inventory of the drug transporters subfamily, included in the major facilitator superfamily (MFS), encoded by the complete genome of Mycobacterium tuberculosis (MTB). These proteins were identified on the basis of their characteristic stretches of amino acids and transmembrane segments (TMS) number. CONCLUSIONS: Genome analysis and searches of homology between the identified transporters and proteins characterized in other organisms revealed 16 open reading frames encoding putative drug efflux pumps belonging to MFS. In the case of two of them, we also have demonstrated that they function as drug efflux proteins.  相似文献   

6.
Pathogenic fungus Candida albicans can efficiently utilize the aminosugar N-acetylglucosamine (GlcNAc) as energy source. Since the mucosal membrane, the site of infection is rich in amino sugars, this specific adaptation is important for the establishment of infection. The genes encoding for the enzymes of the GlcNAc catabolic pathway, GlcNAc kinase (HXK1), GlcNAc-6-phosphate deacetylase (DAC1), and glucosamine-6-phosphate deaminase (NAG1), are present in a cluster, the Nag regulon, which is associated with virulence. In this study, we have characterized two genes, TMP1 and TMP2, present within the Nag regulon, upstream to DAC1. They encode two membrane associated sugar transporters of the major facilitator superfamily (MFS). The null mutant of TMP1 and TMP2 is able to grow in GlcNAc, implying that they are not involved in GlcNAc transport. However, it shows increased susceptibility to a number of unrelated antifungal compounds such as cycloheximide, 4-nitroquinoline-N-oxide, and 1-10 phenanthroline. Northern blot analysis revealed that TMP1 and TMP2 are upregulated in response to these drugs, suggesting that they function as multiple drug efflux pumps.  相似文献   

7.
结核病是由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)引起的一种传染病。随着多药耐药和广泛耐药结核分枝杆菌的出现,结核病的治疗变得更为艰难。近年来研究发现,结核分枝杆菌存在外排泵是其耐药的原因之一,现已发现结核分枝杆菌的主要易化子超家族(major facilitator superfamily,MFS)、三磷酸腺苷(adenosine-triphosphate,ATP)结合盒超家族(ATP-Binding Cassette,ABC)、耐受小节分裂区家族(resistance-nodulation-division,RND)和小耐多药性家族(small multidrug resistance,SMR)外排泵。但是人们对结核分枝杆菌外排泵介导的耐药现象认识不足,仍缺乏从新药发现角度研发外排泵抑制剂的研究。本文拟对结核分枝杆菌的ABC、MFS、RND和SMR外排泵的结构和功能,以及结核分枝杆菌外排泵抑制剂的研究进展进行综述。  相似文献   

8.
近年来,随着广谱抗生素,免疫抑制剂,抗肿瘤化疗药物的广泛应用,器官移植的普遍开展以及AIDS患者的逐年增加,各系统侵袭性真菌感染日益增多。抗真菌药物的大量应用使得真菌耐药现象日渐严重。大量研究表明,耐药真菌细胞膜上外排转运蛋白的过量表达对抗真菌药物耐药形成起到重要作用。ATP结合盒式蛋白(ABC转运体)和易化扩散载体超家族蛋白(MFS转运体)便是其中最重要的两种。本文从ABC及MFS转运体的结构和功能出发,分析其在抗真菌药物耐药形成中的作用,并对相关研究进展进行综述。  相似文献   

9.
Phylogeny of multidrug transporters.   总被引:21,自引:0,他引:21  
We currently recognize five large ubiquitous superfamilies and one small eukaryotic-specific family in which cellular multidrug efflux pumps occur. One, the ABC superfamily, includes members that use ATP hydrolysis to drive drug efflux, but the MFS, RND, MATE and DMT superfamilies include members that are secondary carriers, functioning by drug:H(+)or drug:Na(+)antiport mechanisms. The small MET family seems to be restricted to endosomal membranes of eukaryotes, and only a single such system has been functionally characterized. In this review article, these families of drug transporters are discussed and evaluated from phylogenetic standpoints.  相似文献   

10.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   

11.
The ATP binding cassette (ABC) superfamily is a large, ubiquitous and diverse group of proteins, most of which mediate transport across biological membranes. ABC transporters have been shown to function not only as ATP-dependent pumps, but also as ion channels and channel regulators. Whilst members of this gene family have been extensively characterised in mammalian and microbial systems, the study of plant ABC transporters is a relatively new field of investigation. Sequences of over 20 plant ABC proteins have been published and include homologues of P-glycoprotein, MRP, PDR5 and organellar transporters. At present, functions have been assigned to a small proportion of these genes and only the MRP subclass has been extensively characterised. This review aims to summarise literature relevant to the study of plant ABC transporters, to review methods of cloning, to discuss the utility of yeast and mammalian systems as models and to speculate on possible roles of uncharacterised ABC transporters in plants.  相似文献   

12.
Many multidrug transporters from gram-negative bacteria belong to the resistance-nodulation-cell division (RND) superfamily of transporters. RND-type multidrug transporters have an extremely broad substrate specificity and protect bacterial cells from the actions of antibiotics on both sides of the cytoplasmic membrane. They usually function as three-component assemblies spanning the outer and cytoplasmic membranes and the periplasmic space of gram-negative bacteria. The structural determinants of RND transporters responsible for multidrug recognition and complex assembly remain unknown. We constructed chimeric RND transporters composed of N-terminal residues of AcrB and C-terminal residues of MexB, the major RND-type transporters from Escherichia coli and Pseudomonas aeruginosa, respectively. The assembly of complexes and multidrug efflux activities of chimeric transporters were determined by coexpression of hybrid genes either with AcrA, the periplasmic component of the AcrAB transporter from E. coli, or with MexA and OprM, the accessory proteins of the MexAB-OprM pump from P. aeruginosa. We found that the specificity of interaction with the corresponding periplasmic component is encoded in the T60-V612 region of transporters. Our results also suggest that the large periplasmic loops of RND-type transporters are involved in multidrug recognition and efflux.  相似文献   

13.
外排泵的过表达是目前导致鲍曼不动杆菌多重耐药的最重要机制之一,详细了解这一复杂机制有助于尽快找到有效的防治策略。目前,鲍曼不动杆菌中已被报道的外排泵家族包括耐药结节细胞分化(resistance-nodulation-cell division,RND)家族、主要协同转运蛋白超家族(major facilitator superfamily,MFS)、多药及毒性化合物外排(multidrug and toxic compound extrusion,MATE)家族、小多重耐药(small multidrug resistance,SMR)家族。它们之中既有通过染色体介导的外排泵,也有通过质粒等遗传元件介导的外排泵。外排底物可呈现多样性,也可呈现专一性。本文就上述外排泵的种类、功能和调控机制进行综述。  相似文献   

14.
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.  相似文献   

15.
The human ATP-binding cassette (ABC) transporter superfamily.   总被引:2,自引:0,他引:2  
The transport of specific molecules across lipid membranes is an essential function of all living organisms and a large number of specific transporters have evolved to carry out this function. The largest transporter gene family is the ATP-binding cassette (ABC) transporter superfamily. These proteins translocate a wide variety of substrates including sugars, amino acids, metal ions, peptides, and proteins, and a large number of hydrophobic compounds and metabolites across extra- and intracellular membranes. ABC genes are essential for many processes in the cell, and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Characterization of eukaryotic genomes has allowed the complete identification of all the ABC genes in the yeast Saccharomyces cerevisiae, Drosophila, and C. elegans genomes. To date, there are 48 characterized human ABC genes. The genes can be divided into seven distinct subfamilies, based on organization of domains and amino acid homology. Many ABC genes play a role in the maintenance of the lipid bilayer and in the transport of fatty acids and sterols within the body. Here, we review the current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane.  相似文献   

16.
ATP-binding cassette (ABC) transporters encompass membrane transport proteins that couple the energy derived from ATP hydrolysis to the translocation of solutes across biological membranes. The functions of these proteins include ancient and conserved mechanisms related to nutrition and pathogenesis in bacteria, spore formation in fungi, and signal transduction, protein secretion and antigen presentation in eukaryotes. Furthermore, one of the major causes of drug resistance and chemotherapeutic failure in both cancer and anti-infective therapies is the active movement of compounds across membranes carried out by ABC transporters. Thus, the clinical relevance of ABC transporters is enormous, and the membrane transporters related to chemoresistance are among the best-studied members of the ABC transporter superfamily. As ABC transporter blockers can be used in combination with current drugs to increase their efficacy, the (possible) impact of efflux pump inhibitors is of great clinical interest. The present review summarizes the progress made in recent years in the identification, design, availability, and applicability of ABC transporter blockers in experimental scenarios oriented towards improving the treatment of infectious diseases caused by microorganisms including parasites.  相似文献   

17.
The extreme thermoacidophilic archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 3 and uses a variety of sugars as sole carbon and energy source. Glucose transport in this organism is mediated by a high-affinity binding protein-dependent ATP-binding cassette (ABC) transporter. Sugar-binding studies revealed the presence of four additional membrane-bound binding proteins for arabinose, cellobiose, maltose and trehalose. These glycosylated binding proteins are subunits of ABC transporters that fall into two distinct groups: (i) monosaccharide transporters that are homologous to the sugar transport family containing a single ATPase and a periplasmic-binding protein that is processed at an unusual site at its amino-terminus; (ii) di- and oligosaccharide transporters, which are homologous to the family of oligo/dipeptide transporters that contain two different ATPases, and a binding protein that is synthesized with a typical bacterial signal sequence. The latter family has not been implicated in sugar transport before. These data indicate that binding protein-dependent transport is the predominant mechanism of transport for sugars in S. solfataricus.  相似文献   

18.
Clinically relevant azole resistance in the fungal pathogen Candida albicans is most often associated with the increased expression of plasma membrane efflux pumps, specifically the ATP-binding cassette (ABC) transporters CaCdr1p and CaCdr2p and the major facilitator superfamily (MFS) transporter CaMdr1p. Development of potent pump inhibitors that chemosensitize cells to azoles is a promising approach to overcome antifungal resistance. Here we identify Nile red as a new fluorescent substrate for CaCdr1p, CaCdr2p, and CaMdr1p. Nile red was effluxed efficiently from Saccharomyces cerevisiae cells heterologously expressing these transporters. Enniatin selectively inhibited the efflux of Nile red from S. cerevisiae cells expressing CaCdr1p or CaMdr1p but not from cells expressing CaCdr2p. This indicates that Nile red can be used for the identification of inhibitors specific for particular transporters mediating antifungal resistance in pathogenic yeast.  相似文献   

19.
Chemotaxis to the aromatic acid 4-hydroxybenzoate (4-HBA) by Pseudomonas putida is mediated by PcaK, a membrane-bound protein that also functions as a 4-HBA transporter. PcaK belongs to the major facilitator superfamily (MFS) of transport proteins, none of which have so far been implicated in chemotaxis. Work with two well-studied MFS transporters, LacY (the lactose permease) and TetA (a tetracycline efflux protein), has revealed two stretches of amino acids located between the second and third (2-3 loop) and the eighth and ninth (8-9 loop) transmembrane regions that are required for substrate transport. These sequences are conserved among most MFS transporters, including PcaK. To determine if PcaK has functional requirements similar to those of other MFS transport proteins and to analyze the relationship between the transport and chemotaxis functions of PcaK, we generated strains with mutations in amino acid residues located in the 2-3 and 8-9 loops of PcaK. The mutant proteins were analyzed in 4-HBA transport and chemotaxis assays. Cells expressing mutant PcaK proteins had a range of phenotypes. Some transported at wild-type levels, while others were partially or completely defective in 4-HBA transport. An aspartate residue in the 8-9 loop that has no counterpart in LacY and TetA, but is conserved among members of the aromatic acid/H(+) symporter family of the MFS, was found to be critical for 4-HBA transport. These results indicate that conserved amino acids in the 2-3 and 8-9 loops of PcaK are required for 4-HBA transport. Amino acid changes that decreased 4-HBA transport also caused a decrease in 4-HBA chemotaxis, but the effect on chemotaxis was sometimes slightly more severe. The requirement of PcaK for both 4-HBA transport and chemotaxis demonstrates that P. putida has a chemoreceptor that differs from the classical chemoreceptors described for Escherichia coli and Salmonella typhimurium.  相似文献   

20.
K Koita  CV Rao 《PloS one》2012,7(8):e43700
Escherichia coli possesses a number of proteins that transport sugars out of the cell. We identified 31 candidate sugar efflux transporters based on their similarity to known sugar efflux transporters. We then tested whether these transporters affect arabinose and xylose metabolism. We identified 13 transporters - setC, cmr, ynfM, mdtD, yfcJ, yhhS, emrD, ydhC, ydeA, ybdA, ydeE, mhpT, and kgtP - that appeared to increase or decrease intracellular arabinose concentrations when respectively deleted or over-expressed. None of the candidate transporters affected xylose concentrations. These results indicate that E. coli possesses multiple arabinose efflux transporters. They also provide a novel target for future metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号