首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial nitric oxide synthesis.   总被引:3,自引:0,他引:3  
The structure-function relationships in nitrite reductases, key enzymes in the dissimilatory denitrification pathway which reduce nitrite to nitric oxide (NO), are reviewed in this paper. The mechanisms of NO production are discussed in detail and special attention is paid to new structural information, such as the high resolution structure of the copper- and heme-containing enzymes from different sources. Finally, some implications relevant to regulation of the steady state levels of NO in denitrifiers are presented.  相似文献   

2.
3.
NO作为细胞间信息传递的重要调节因子,在肿瘤的发生、发展以及转移过程中被广泛研究。一氧化氮合酶是合成NO的关键酶,诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)通常在应激、荷瘤等病理状态下被激活,产生大量NO。NO具有细胞毒性,与机体免疫反应及细胞凋亡有关,在许多致癌和抑癌机制中扮演着重要角色。实验探讨了光动力学疗法(photodynamic therapy,PDT)处理产生的小鼠乳腺癌凋亡细胞对巨噬细胞产生NO的影响,从而确定活化的巨噬细胞在肿瘤生长中的作用。  相似文献   

4.
This review deals with the physical and chemical properties of nitric oxide as well as with the mechanisms and enzymes synthesizing this compound in animals including humans. The cytotoxic, vasodilatory, neuromediatory, and other properties of NO are analyzed. Polyfunctionality of NO in the norm and in pathologies of different genesis is shown. It is suggested that the analysis of the mechanisms of cyclic conversion of nitric oxide and the elucidation of the role of all NO metabolism products in living organisms would allow us to approach a more profound understanding of the NO problem in biology and medicine. It is reasonable to think the knowledge obtained in the course of the studies will permit an elaboration of the strategy and tactics of medical treatment of many diseases occurring on the background of disturbance in the mechanisms of formation and utilization of this compound.  相似文献   

5.
以津春2号黄瓜为材料,采用营养液水培的方法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响.结果表明,(1)正常生长条件下添加NO能促进黄瓜幼苗生长,而添加亚甲基蓝(MB-1)显著抑制黄瓜幼苗的生长;(2)添加NO显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,提高根系还原型谷胱甘肽(GSH)含量、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,而氧化型谷胱甘肽(GSSG)含量略有下降,同时缓解了NaCl胁迫下抗坏血酸(ASA)含量的下降幅度;(3)NaCl胁迫下添加NO的同时添加MB-1可部分解除NO的作用,与NaCl胁迫下单独添加NO处理比较,GR活性、GSH和ASA含量均降低,GSSG含量提高,APX先升高后下降.研究发现,外源NO可能通过鸟苷酸环化酶(cGC)介导来调节NaCl胁迫下黄瓜幼苗根系GR活性和GSH、GSSG、ASA含量,提高抗氧化酶活性和非酶抗氧化物质含量,增强植株对活性氧的清除能力,减少膜脂过氧化,缓解NaCl胁迫对黄瓜幼苗造成的伤害.  相似文献   

6.
Fan W  Huang F  Wu Z  Zhu X  Li D  He H 《Nitric oxide》2012,26(1):32-37
Nitric oxide (NO) is a free radical gas that has been shown to be produced by nitric oxide synthase (NOS) in different cell types and recognized to act as a neurotransmitter or neuromodulator in the nervous system. NOS isoforms are expressed and/or can be induced in the related structures of trigeminal nerve system, in which the regulation of NOS biosynthesis at different levels of gene expression may allow for a fine control of NO production. Several lines of evidence suggest that NO may play a role through multiple mechanisms in orofacial pain processing. This report will review the latest evidence for the role of NO involved in orofacial pain and the potential cellular mechanisms are also discussed.  相似文献   

7.
The article continues the series of our publications on the problem of nitric oxide (NO) and its cyclic conversion in mammals. This review is held to analysis of nitric oxide role in regulation of cardiovascular system and in alocation of NO-synthases in myocardium. Molecular, biochemical and cytophysiological aspects that linked, with spatial localization of NO-synthases and mechanisms of NO content regulation in myocardium are considered. The results of author's investigations along the cyclic convertion of NO and literature data about compartmentalization of NO-synthases in myocardium are included in this paper. The contradictory and dissimilar facts about regulatory and toxic role of nitric oxide in cardiovascular system are represented.  相似文献   

8.
9.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

10.
Production of nitric oxide (NO) can be stimulated by inflammatory cytokines and bacterial lipopolysaccharide (LPS) in mammalian cells via an inducible nitric oxide synthase (iNOS). Conversely, the transforming growth factor-βs (TGF-βs) suppress NO production by reducing iNOS expression. Production of NO leads to disparate consequences, some beneficial and some damaging to the host, depending on the cell and context in which iNOS is induced. The TGF-βs counter these NO-mediated processes in macrophages, cardiac myocytes, smooth muscle cells, bone marrow cells, and retinal pigment epithelial cells. Autocrine or paracrine production of TGF-β may thus serve as a physiological counterbalance for iNOS expression, a mechanism which may be subverted by pathogens and tumors for their own survival. A greater understanding of the mechanisms and consequences of NO and TGF-β production may lead to effective therapeutic strategies in various diseases.  相似文献   

11.
Investigations on the biological effects of nitric oxide (NO) derived from nitric oxide synthase (NOS) have led to an explosion in biomedical research over the last decade. The chemistry of this diatomic radical is key to its biological effects. Recently, nitroxyl (HNO/NO(-)) has been proposed to be another important constituent of NO biology. However, these redox siblings often exhibit orthogonal behavior in physiological and cellular responses. We therefore explored the chemistry of NO and HNO with heme proteins in different redox states and observed that HNO favors reaction with ferric heme while NO favors ferrous, consistent with previous reports. Further results show that HNO and NO were equally effective in inhibiting cytochrome P450 activity, which involves ferric and ferrous complexes. The differential chemical behavior of NO and HNO toward heme proteins provides insight into mechanisms of activity that not only helps explain some of the opposing effects observed in NOS-mediated events, but offers a unique control mechanism for the biological action of NO.  相似文献   

12.
Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.  相似文献   

13.
Nitric oxide (NO) is a free radical involved in many physiological processes including regulation of blood pressure, immune response, and neurotransmission. However, the measurement of extremely low, in some cases subnanomolar, physiological concentrations of nitric oxide presents an analytical challenge. The purpose of this methods article is to introduce a new highly sensitive chemiluminescence approach to direct NO detection in aqueous solutions using a natural nitric oxide target, soluble guanylyl cyclase (sGC), which catalyzes the conversion of guanosine triphosphate to guanosine 3′,5′-cyclic monophosphate and inorganic pyrophosphate. The suggested enzymatic assay uses the fact that the rate of the reaction increases by about 200 times when NO binds with sGC and, in so doing, provides a sensor for nitric oxide. Luminescence detection of the above reaction is accomplished by converting inorganic pyrophosphate into ATP with the help of ATP sulfurylase followed by light emission from the ATP-dependent luciferin–luciferase reaction. Detailed protocols for NO quantification in aqueous samples are provided. The examples of applications include measurement of NO generated by a nitric oxide donor (PAPA-NONOate), nitric oxide synthase, and NO gas dissolved in buffer. The method allows for the measurement of NO concentrations in the nanomolar range and NO generation rates as low as 100 pM/min.  相似文献   

14.
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.  相似文献   

15.
Locus of fragility in robust breast cancer system   总被引:1,自引:0,他引:1  
Functional heterogeneous redundancy of breast cancer makes this tumor to be robust. Signaling mechanisms which control cancer responses are crucial for controlling robustness. Identification of locus of fragility in cancer represents basic mechanism to target robustness. The goal of this prospect is to present locus of fragility in breast cancer robust system, and how disruption of this locus induces failure of robustness. My recent research show, that locus of fragility in breast cancer cells is suppression of nitric oxide (NO). When it was targeted, dynamics of cancer to generate robustness failed that it blocked cancer cell proliferation dependent on the NO/Rb pathway, blocked cell migration and angiogenesis dependent on the VEGF/PI3K/AKT/NO/ICAM-1 pathway, and induced breast cancer cell apoptosis through the NO/ROCK/FOXO3a signaling pathway. This tiny and trivial perturbation in breast cancer cells such as suppression of NO represents locus of fragility (weakness) and new approach for breast cancer chemotherapy.  相似文献   

16.
Chronic inflammation of gastrointestinal tissues is a well-recognized risk factor for the development of epithelial cell-derived malignancies. Although the inflammatory mediators linking chronic inflammation to carcinogenesis are numerous, current information suggests that nitric oxide (NO) contributes to carcinogenesis during chronic inflammation. Inducible nitric oxide synthase (iNOS), expressed by both macrophages and epithelial cells during inflammation, generates the bioreactive molecule NO. In addition to causing DNA lesions, NO can directly interact with proteins by nitrosylation and nitosation reactions. The consequences of protein damage by NO appear to be procarcinogenic. For example, NO inhibits DNA repair enzymes such as human 8-oxodeoxyguanosine DNA glycosylase 1 and blocks apoptosis via nitrosylation of caspases. These cellular events permit DNA damage to accumulate, which is required for the numerous mutations necessary for development of invasive cancer. NO also promotes cancer progression by functioning as an angiogenesis factor. Strategies to inhibit NO generation during chronic inflammation or to scavenge reactive nitrogen species may prove useful in decreasing the risk of cancer development in chronic inflammatory gastrointestinal diseases.  相似文献   

17.
Phagocytosis is regulated by nitric oxide in murine microglia.   总被引:2,自引:0,他引:2  
Nitric oxide (NO) is produced by inducible nitric oxide synthase (iNOS) in activated microglia and has been shown to participate in host defense mechanisms. However, the role of NO produced by constitutive nitric oxide synthase (cNOS) in microglia is poorly understood. In this report, NO was found to regulate phagocytosis in murine BV-2 microglial cells as quantified by flow cytometry. Addition of NO-generating compounds caused impaired phagocytosis as compared to untreated microglia. The addition of nitric oxide synthase (NOS) inhibitors to microglial cells resulted in potentiation of phagocytosis, suggesting that constitutive NO was participating in the regulation of phagocytosis. The inverse correlation between NO production and phagocytosis was also observed when Alzheimer's beta-amyloid peptide was added. With beta-amyloid treatment, constitutive NO production decreased while phagocytosis increased. Cell extracts prepared from untreated microglia were found to contain both neuronal and endothelial NOS isoforms, but not the inducible form. The correlation of spontaneous NO production with attenuated phagocytosis suggests that constitutive NOS enzymes participate in microglial regulation.  相似文献   

18.
19.
国内外对导致肺纤维化的肺部疾病中诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)基因在NF-κB参与诱导活化下,催化合成的一氧化氮(nitric oxide,NO)在肺纤维化过程中发挥细胞保护性及细胞毒性双重作用的研究已取得一些进展。本文主要阐述iNOS基因在NF-κB诱导活化下合成的NO与肺纤维化的关系,从而为NO作用的双重性和网络性及NO与肺纤维化关系的研究提供一些线索。  相似文献   

20.
Shiva S  Darley-Usmar VM 《IUBMB life》2003,55(10-11):585-590
Prominent among the mechanisms of interaction of nitric oxide (NO) with intracellular targets are the reactions with heme proteins. For example, the mechanism through which NO induces synthesis of the second messenger cyclic GMP involves the binding of NO to the heme in soluble guanylate cyclase. It has only recently been appreciated that NO binding to the binuclear oxygen binding site in cytochrome c oxidase may also serve as a signal transduction pathway. We postulate that NO is uniquely positioned to control mitochondrial respiration and in doing so regulates oxygen gradients within the cell. In this short overview the mechanisms of NO-dependent regulation of mitochondrial function will be discussed in the context of some of the biological and physiological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号