首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The motional properties of the inner and outer monolayer headgroups of egg phosphatidylcholine (PC) small unilamellar vesicles (SUV) were investigated by 31P-NMR temperature-dependent spin-lattice relaxation time constant (T1) and 31P[1H] nuclear Overhauser effect (NOE) analyses. Three different aspects of the dynamics of PC headgroups were investigated using the T1 analysis. First, differences in the dynamics of the headgroup region of both surfaces of the SUV were measured after application of a chemical shift reagent, PrCl3, to either the extra- or intravesicular volumes. Second, the ability of the T1 experiment to resolve the different motional states was evaluated in the absence of shift reagent. Third, comparison between correlation times obtained from a resonance frequency dependent 31P[1H] NOE analysis allowed a determination of the applicability of a simplified motional model to describe phosphorus dipolar relaxation. Temperature-dependent 31P-NMR T1 values obtained for the individual monolayers at 81.0 and 162.0 MHz were modelled assuming that phosphorus undergoes both a dipolar and an anisotropic chemical shielding relaxation mechanism, each being described by the same correlation time, tau. At 162.0 MHz, the position of the T1 minimum for the inner monolayer was 9 degrees higher than that of the outer region, indicating a higher level of motional restriction for the inner leaflet, in agreement with 31P[1H] NOE measurements. The 162.0 MHz T1 profile of the combined SUV monolayers exhibited a smooth minimum located at the midpoint of the monolayer minima positions, effectively masking the presence of the individual surfaces. 31P[1H] NOE results obtained at 32.3, 81.0 and 162.0 MHz did not agree with those predicted from a simple dipolar relaxation model. These results suggest a T1-temperature method can neither discriminate two or more closely related motional time scales in a heterogeneous environment (such as incorporation of protein into lipid bilayers) nor allow accurate determination of the correlation time at the position of the minimum when the dipolar relaxation rate makes a significant contribution to the overall rate.  相似文献   

2.
3.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

4.
B Kieffer  P Koehl  J F Lefèvre 《Biochimie》1992,74(9-10):815-824
The internal dynamics of a cyclic peptide which was designed to mimic an antigenic loop of the haemagglutinin, is studied through heteronuclear relaxation along the 13C alpha-1H alpha vectors and through homonuclear relaxation along the 1H alpha-1HN and 1H beta-1H beta' vectors. Order parameters are extracted from the longitudinal and cross-relaxation data. Molecular dynamics simulations are performed and the order parameters are calculated in different ways from the trajectories. The simulation, which is performed in vacuo, gives smaller order parameters (vector motions of larger amplitude) than the experimental results. However, the general features of the experimental order parameters are reproduced by the molecular dynamics simulation. The flexibility of the molecule can then be investigated from the results of the molecular dynamics. It shows that the mobility observed through the order parameters is due to motions in flanking regions, remote from the observed vectors.  相似文献   

5.
The nature and dynamics of the motions of a diunsaturated fatty acyl chain in a lipid bilayer were examined using a comprehensive simulation program for 2H NMR line shapes developed by Wittebort et al. [Wittebort, R. J., Olejniczak, E. T., & Griffin, R. G. (1987) J. Chem. Phys. 36, 5411-5420]. A motional model in which the isolinoleoyl chain (18:2 delta 6,9) adopts two conformations consistent with the low energy structures proposed for 1,4-pentadiene [Applegate, K. R., & Glomset, J. A. (1986) J. Lipid Res. 27, 658-680], but undergoes a rapid jump between these states, is sufficient to account for the experimentally observed quadrupolar couplings, the 2H-2H and 1H-2H dipolar couplings, the longitudinal relaxation times, and the changes in the average conformation of the chain that occur with a variation in temperature. The jump motion originates via rotations about the C7-C8 and the C8-C9 carbon bonds and leads to the low order parameters assigned to the C8 methylene segment (0.18) and the C9-C10 double bond (0.11). In contrast, the C6-C7 double bond, which is not involved in the two-site jump, characterized by a relatively large order parameter (0.56). Fatty acyl chains containing three or more double bonds likely cannot undergo the same jump motion and consequently will be highly ordered structures. Correlation times for diffusion of the molecular long axis of the diunsaturated acyl chain about the bilayer normal (approximately 10(-10) s) and for the local jump motion (approximately 10(-10) s) were calculated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
13CH2-multiplet nuclear magnetic resonance relaxation studies on proline (P)-containing glycine (G)-based peptides, GP, PG, GPG, PGG, and GPGG, provided numerous dipolar auto- and cross-correlation times for various motional model analyses of backbone and proline-ring bond rotations. Molecular dynamics simulations and bond rotation energy profiles were calculated to assess which motions could contribute most to observed relaxation phenomena. Results indicate that proline restricts backbone psi 1, psi 2, and phi 2 motions by 50% relative to those found for a polyglycine control peptide. psi 1 rotations are more restricted in the trans-proline isomer state than in the cis form. A two-state jump model best approximates proline ring puckering which in water could occur either by the C gamma endo-exo or by the C2 interconversion mechanism. The temperature dependence (5 degrees to 75 degrees C) of C beta, and C gamma, and C delta angular changes is rather flat, suggesting a near zero enthalpic contribution to the ring puckering process. In lower dielectric solvents, dimethylsulfoxide and methanol, which may mimic the hydrophobic environment within a protein, the endo-exo mechanism is preferred.  相似文献   

7.
It has been shown previously that two types of motion are adequate to describe the partially relaxed 2H NMR line shapes (inversion recovery experiment) for the backbone portion of the glycolipid 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL) in the highly ordered gel phase (Auger, M.A., D. Carrier, I.C.P. Smith, and H. C. Jarrell. 1990. J. Am. Chem. Soc. 112:1373-1381). This study extends the latter investigation to the more fluid liquid-crystalline phase, where more complex motions are anticipated. Analyses of the powder line shapes and oriented sample relaxation data for both the glycerol backbone and head group regions of this lipid have been performed. The dynamics of glycerol at the C3 position in the gel state have been described by large angle jumps about the C2-C3 bond with a correlation time in the fast-limit motional regime (omega o tau c much less than 1) and site populations 0.46, 0.34, and 0.20. The present data show that in the liquid-crystalline phase the internal jump rate is maintained, and two additional motions are necessary to describe the dependence of the relaxation rate on the orientation of the director with respect to the magnetic field direction. These are rotation about the molecular long axis with a correlation time in the slow-limit motional regime very near to the T1 minimum (omega o tau c approximately 0.65), and molecular fluctuations about the order director (modeled by a Maier-Saupe restoration potential). This treatment was also extended to the glucose head group where additional segmental motion about the glycosidic bond has been reported previously. While the two motions dominating relaxation at the glycerol C3 segment reproduce the general relaxation features of the glucose head group, the results suggest that additional motion about the glycosidic linkage must be present. This study is a stringent test of the motional model chosen earlier because relaxation data were obtained at two 2H NMR frequencies using two relaxation experiments (T1Z and T1Q) and two types of sample preparation (oriented and dispersed multibilayers). The results strongly uphold the choice of model and indicate the utility of both oriented samples and the T1Q experiment.  相似文献   

8.
Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps–μs motions in proteins by solid-state NMR.  相似文献   

9.
Structural and kinetic features of the Mn(II)-Leu-enkephalin binding equilibria were delineated by measuring 13C and 1H NMR spin-lattice relaxation rates. The temperature dependence of such rates showed that some carbons were experiencing slow exchange regimes such that kinetic parameters at room temperature could be calculated (k(off) = 1400 sec-1, delta H* = 12.0 kcal/mol, delta S* = -9.9 e.u.). The paramagnetic rates of fast exchanging carbons were interpreted by the Solomon-Bloembergen-Morgan theory to provide structural parameters. The terminal carboxyl and amino groups were shown to be the binding sites. The motional correlation time (tau c = 0.6 nsec at 298 K) was calculated by measuring selective and double-selective 1H spin-lattice relaxation rates for the free peptide. The number of coordinated ligands was evaluated by considering the distance of the Leu CO in the complex at 2.54 A, as shown by molecular models. Finally, carbon-Mn(II) distances were calculated and the molecular model of the 1:1 complex was built.  相似文献   

10.
11.
19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).  相似文献   

12.
Kroncke BM  Horanyi PS  Columbus L 《Biochemistry》2010,49(47):10045-10060
Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.  相似文献   

13.
Protein side chain dynamics is associated with protein stability, folding, and intermolecular interactions. Detailed dynamics information is crucial for the understanding of protein function and biochemical and biophysical properties, which can be obtained using NMR relaxation techniques. In this review, (13)C relaxation of methine, methylene and methyl groups with and without (1)H decoupling are described briefly for a better understanding of how spin relaxation is associated with motional (dynamics) parameters. Developments in the measurement and interpretation of (13)C auto-relaxation and cross-correlated relaxation data are presented too. Finally, recent progress in the use of (13)C relaxation to probe the dynamics of protein side chains is detailed mainly for the dynamics of non-deuterated proteins on picoseconds-nanosecond timescales.  相似文献   

14.
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental 13C-1H and 2H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.  相似文献   

15.
The three-dimensional structure of a cyclic enterobacterial common antigen (ECA) having four trisaccharide repeating units has been investigated by NMR spectroscopy and molecular dynamics simulations. Three different NMR parameters were determined: (a) (1)H,(1)H cross-relaxation rates from NOE experiments were used for determination of proton-proton distances; (b) trans-glycosidic (3)J(C,H) scalar coupling constants analyzed via a Karplus-type relationship provided information on torsion angles; and (c) (1)H,(13)C one-bond dipolar couplings obtained in a dilute liquid-crystalline medium were interpreted in terms of the orientational order and molecular conformations. The molecular dynamics simulations of the dodecasaccharide were performed with explicit water and counterions, which are important factors that strongly influence molecular conformation. Subsequently, the results from computer simulation were used to generate a three-dimensional structure of the cyclic ECA which is consistent with the experimental NMR parameters.  相似文献   

16.
The solution structure and dynamics of sucrose are examined using a combination of NMR residual dipolar coupling and molecular mechanics force fields. It is found that the alignment tensors of the individual rings are different, and that fitting 35 measured residual dipolar couplings to structures with specific phi, psi values indicates the presence of three major conformations: phi, psi=(120 degrees ,270 degrees), (45 degrees, 300 degrees) and (90 degrees ,180 degrees). Furthermore, fitting two structures simultaneously to the 35 residual dipolar couplings results in a substantial improvement in the fits. The existence of multiple conformations having similar stabilities is a strong indication of motion, due to the interconversion among these states. Results from four molecular mechanics force fields are in general agreement with the experimental results. However, there are major disagreements between force fields. Because fits of residual dipolar couplings to structures are dependent on the force field used to calculate the structures, multiple force fields were used to interpret NMR data. It is demonstrated that the pucker of the fructofuranosyl ring affects the calculated potential energy surface, and the fit to the residual dipolar couplings data. Previously published 13C nuclear relaxation results suggesting that sucrose is rigid are not inconsistent with the present results when motional timescales are considered.  相似文献   

17.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

18.
Human posttranslationally modified N-ras oncogenes are known to be implicated in numerous human cancers. Here, we applied a combination of experimental and computational techniques to determine structural and dynamical details of the lipid chain modifications of an N-ras heptapeptide in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes. Experimentally, 2H NMR spectroscopy was used to study oriented membranes that incorporated ras heptapeptides with two covalently attached perdeuterated hexadecyl chains. Atomistic molecular dynamics simulations of the same system were carried out over 100 ns including 60 DMPC and 4 ras molecules. Several structural and dynamical experimental parameters could be directly compared to the simulation. Experimental and simulated 2H NMR order parameters for the methylene groups of the ras lipid chains exhibited a systematic difference attributable to the absence of collective motions in the simulation and to geometrical effects. In contrast, experimental 2H NMR spin-lattice relaxation rates for Zeeman order were well reproduced in the simulation. The lack of slower collective motions in the simulation did not appreciably influence the relaxation rates at a Larmor frequency of 115.1 MHz. The experimental angular dependence of the 2H NMR relaxation rates with respect to the external magnetic field was also relatively well simulated. These relaxation rates showed a weak angular dependence, suggesting that the lipid modifications of ras are very flexible and highly mobile in agreement with the low order parameters. To quantify these results, the angular dependence of the 2H relaxation rates was calculated by an analytical model considering both molecular and collective motions. Peptide dynamics in the membrane could be modeled by an anisotropic diffusion tensor with principal values of Dparallel=2.1x10(9) s(-1) and Dperpendicular=4.5x10(5) s(-1). A viscoelastic fitting parameter describing the membrane elasticity, viscosity, and temperature was found to be relatively similar for the ras peptide and the DMPC host matrix. Large motional amplitudes and relatively short correlation times facilitate mixing and dispersal with the lipid bilayer matrix, with implications for the role of the full-length ras protein in signal transduction and oncogenesis.  相似文献   

19.
Relaxation in methyl groups is strongly influenced by cross-correlated interactions involving the methyl dipoles. One of the major interference effects results from intra-methyl (1)H-(13)C, (1)H-(1)H dipolar interactions, leading to significant differences in the relaxation of certain multiplet components that contribute to double- and zero-quantum (1)H-(13)C spectra. NMR experiments are presented for the measurement of this differential relaxation effect. It is shown that this difference in relaxation between double- and zero-quantum multiplet components can be used as a sensitive reporter of side chain dynamics and that accurate methyl axis order parameters can be measured in proteins that tumble with correlation times greater than approximately 5 ns.  相似文献   

20.
Structurally characterizing partially folded states is problematic given the nature of these transient species. A peptide 20mer, T38AQLIATLKNGRKISLDLQA57 (P20), which has been shown to partially fold in a relatively stable turn/loop conformation (LKNGR) and transient beta-sheet structure, is a good model for studying backbone and side-chain mobilities in a transiently folded peptide by using 13C-NMR relaxation. Here, four residues in P20, A43, T44, G48, and 151, chosen for their positions in or near the loop conformation and for compositional variety, have been selectively 13C-enriched. Proton-coupled and decoupled 13C-NMR relaxation experiments have been performed to obtain the temperature dependencies (278 K to 343 K) of auto- and cross-correlation motional order parameters and correlation times. In order to differentiate sequence-neighbor effects from folding effects, two shorter peptides derived from P20, IATLK (P5) and NGRKIS (P6), were similarly 13C-enriched and investigated. For A43, T44, G48, and 151 residues in P20 relative to those in P5/P6, several observations are consistent with partial folding in P20: (1) C alpha H motional tendencies are all about the same, vary less with temperature, and are relatively more restricted, (2) G48 C alpha H2 phi (t) psi (t) rotations are more correlated, and (3) methyl group rotations are slower and yield lower activation energies consistent with formation of hydrophobic "pockets." In addition, T44 and 151 C beta H mobilities in P20 are more restricted at lower temperature than those of their C alpha H and display significantly greater sensitivity to temperature suggesting a larger enthalpic contribution to side-chain mobility. Moreover, at higher temperatures, side-chain methyls and methylenes in P20 are more motionally restricted than those in P5/P6, suggesting that some type of "folded" or "collapsed" structure remains in P20 for what normally would be considered an "unfolded" state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号