首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmin inhibited the biosynthesis of tissue-type plasminogen activator (tPA) antigen by human umbilical vein endothelial cells (HUVEC) in a dose-dependent manner. The amount of tPA antigen found in the 24-h conditioned medium of cells treated with 100 nM plasmin for 1 h was 20-30% of that in the control group. However, in contrast to tPA, such treatment led to a 3-fold increase in plasminogen activator inhibitor (PAI) activity, whereas the amount of PAI type 1 antigen was unchanged. The effects of plasmin on HUVEC were binding- and catalytic activity-dependent and were specifically blocked by epsilon-aminocaproic acid. Microplasmin, which has no kringle domains, was less effective in reducing tPA antigen biosynthesis or enhancing PAI activity in HUVEC. Kringle domains of plasmin affected neither tPA antigen nor PAI activity of the cells. Other proteases including chymotrypsin, trypsin, and collagenase at comparable concentrations did not have a significant effect on the biosynthesis of tPA antigen or PAI activity of HUVEC. Thrombin stimulated the biosynthesis of tPA and PAI-1 antigens by HUVEC. Thrombin also stimulated an increase in the protein kinase activity in HUVEC, whereas plasmin inhibited the protein kinase activity of the cells. It is possible that plasmin regulates the biosynthesis of tPA in HUVEC through the signal transduction pathway involving protein kinase.  相似文献   

2.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.  相似文献   

3.
IL-10 is well known to be a potent inhibitor of the synthesis of proinflammatory cytokines, but noninflammatory hemopoietic cells also express IL-10Rs. Here we show that IL-10 directly affects progenitor myeloid cells by protecting them from death following the removal of growth factors. Murine factor-dependent cell progenitors cultured in the absence of growth factors were 43 +/- 1% apoptotic after 12 h. Addition of IL-10 at a concentration as low as 100 pg/ml significantly reduced the apoptotic population to 32 +/- 3%. At 10 ng/ml, IL-10 caused a 4-fold reduction in the apoptotic population (11 +/- 1%). The anti-apoptotic activity of IL-10 was significantly inhibited with a neutralizing IL-10R Ab. Factor-dependent cell progenitor promyeloid cells expressed functional IL-10Rs, as assessed by precipitation of a 110-kDa protein with an Ab to the IL-10R and by the ability of IL-10 to activate Jak1 and Tyk2 and to phosphorylate tyrosine 705 on Stat-3. IL-10 increased tyrosyl phosphorylation of insulin receptor substrate-2 and stimulated the enzymatic activity of both phosphatidylinositol 3'-kinase and Akt. The anti-apoptotic activity of IL-10 was blocked by inhibition of phosphatidylinositol 3'-kinase. Wortmannin and LY294002 also totally inhibited activation of extracellular signal-related kinase (ERK)1/2 by IL-10. Direct inhibition of ERK1/2 with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059 partially, but significantly, impaired the anti-apoptotic activity of IL-10. These data establish that activation of the IL-10R promotes survival of progenitor myeloid cells. This survival-promoting activity is totally due to IL-10 stimulating the insulin receptor substrate-2/PI 3-kinase/Akt pathway, which increases the anti-apoptotic activity of ERK1/2.  相似文献   

4.
Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.  相似文献   

5.
6.
FSH and GnRH both stimulate rat granulosa cells to produce tissue-type plasminogen activator (tPA). We have studied the molecular mechanisms involved in the action of these hormones by measuring tPA mRNA levels in primary cultures of rat granulosa cells. When granulosa cells were cultured in the presence of FSH or GnRH the level of tPA mRNA was increased 20- and 12-fold, respectively. The induction of tPA mRNA by FSH and GnRH was additive and the kinetics of induction differed. The effect of FSH could be mimicked by bromo-cAMP or forskolin, and was drastically enhanced by cotreatment with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine. These findings are consistent with the notion that FSH mediates its effect through the protein kinase A pathway. GnRH is believed to augment phospholipid turnover in granulosa cells, leading to the activation of the protein kinase C pathway. Like GnRH, the protein kinase C activator phorbol myristate acetate also induced tPA mRNA in granulosa cells. In the presence of the protein synthesis inhibitor, cycloheximide, FSH-stimulated tPA message levels were enhanced by 30-fold, revealing superinduction of tPA mRNA levels by this pathway. In contrast the induction of tPA mRNA by GnRH was inhibited by cycloheximide indicating that the synthesis of an intermediate protein is required for the GnRH effect. Our data suggest that FSH and GnRH increase the tPA mRNA levels by two distinct pathways in cultured granulosa cells, providing a model system for studying the hormonal regulation of tPA gene expression.  相似文献   

7.
Slomiany BL  Slomiany A 《IUBMB life》2002,54(5):267-273
Nitric oxide (NO) is an important biological messenger in the regulation of tissue homeostasis and pathophysiological processes. Here, we investigated the effect of NO on gastric mucus glycoprotein (mucin) synthesis, apoptotic processes, and the involvement of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Exposure of gastric mucosal cells to NO donor led to a dose-dependent decrease (up to 48%) in mucin synthesis, accompanied by a marked increase in caspase-3 activity and apoptosis. Inhibition of ERK with PD98059 accelerated (up to 23.8%) the NO-induced decrease in mucin synthesis, and cause further enhancement in caspase-3 activity and apoptosis. Blockade of p38 kinase with SB203580 produced reversal in the NO-induced reduction in mucin synthesis, and substantially countered the induced increase in caspase-3 activity and apoptosis. Moreover, caspase-3 inhibitor not only blocked the NO-induced increase in caspase-3 activity but also produced an increase in mucin synthesis. Thus, the detrimental influence of NO on mucin synthesis is closely linked to caspase-3 activation and apoptosis, and involves ERK and p38 kinase participation. Activation of p38 kinase leads to the upregulation of proapoptotic signal, while ERK activation stimulates the anti-apoptotic pathway.  相似文献   

8.
BIK is a pro-apoptotic BCL-2 family member and is the founding member of a subfamily of pro-apoptotic proteins known as "BH3-alone" proteins. Ectopic expression of BIK induces apoptosis in variety of mammalian cells. BIK complexes with various anti-apoptotic BCL-2 family proteins such as adenovirus E1B-19K and BCL-2 via the BH3 domain. However, the heterodimerization activity of BIK alone is insufficient for its apoptotic activity. Previous studies have shown that phosphorylation regulates the functional activity of both anti-apoptotic and pro-apoptotic members of the BCL-2 family. Here, we have examined phosphorylation of BIK and its effect on the apoptotic activity of BIK. We show that BIK exists as a phosphoprotein and is phosphorylated at residues 33 (threonine) and 35 (serine). Mutation of the phosphorylation sites, in which the Thr and Ser residues were changed to alanine residues, reduced the apoptotic activity of BIK without significantly affecting its ability to heterodimerize with BCL-2. Our results suggest that phosphorylation of BIK is required for eliciting efficient apoptotic activity. Partial purification of the protein kinase from HeLa cell cytoplasmic extracts suggest that BIK may be phosphorylated by a casein kinase II-related enzyme.  相似文献   

9.
10.
The aim of the present study was to identify biochemical pathways driving the resistance of endothelial cells to apoptosis induced by tumour necrosis factor-alpha (TNF). (1) Although nuclear factor-kappa B (NF-kappaB) was activated by TNF, its inhibition by MG-132 failed to sensitize these cells. (2) The activation of protein kinase C (PKC) by phorbol ester completely abolished the TNF-induced cell death. (3) The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (Wo) triggered apoptosis and enhanced the TNF-induced cell death. (4) The MEK inhibitor PD98059 did not affect the TNF-induced apoptotic process. (5) The p38 is activated by TNF and its inhibition by SB203580 sensitized the cells to TNF. This is correlated with the inhibition of phosphorylation of heat-shock protein of 27 kDa (HSP27).These results indicate that TNF activates NF-kappaB, which does not drive any anti-apoptotic response, and p38, which plays an anti-apoptotic function probably through HSP27 phosphorylation. Moreover, PKC and PI3K are involved in the control of survival pathways.  相似文献   

11.
Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, promotes endothelial cell survival and angiogenesis. We recently showed that VEGF can support the growth of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells in serum-free medium. Reasoning that VEGF might be modulating apoptotic signal transduction pathways, we examined mechanisms involved in the anti-apoptotic effect of VEGF on starvation- and ceramide-induced apoptosis in HDMEC. We observed that VEGF ameliorated the time-dependent increase in apoptosis, as demonstrated by morphologic observations, TUNEL assay, and DNA fragmentation. On the other hand, basic fibroblast growth factor only partially prevented apoptosis in serum-starved HDMEC; platelet-derived growth factor-BB was completely ineffective. VEGF activated the phosphorylation of extracellular signal regulated kinase (ERK)1 (p44 mitogen-activated protein kinase; MAPK) and ERK2 (p42 MAPK) in a time- and concentration-dependent manner. Both the VEGF-induced activation and its anti-apoptotic effect were prevented by the specific MAPK/ERK inhibitor PD98059. The presence of VEGF also inhibited the sustained activation of stress-activated protein kinase/c-jun-NH2-kinase (SAPK/JNK) caused by serum starvation and ceramide treatment. Activation of the MAPK pathway together with inhibition of SAPK/JNK activity by VEGF appears to be a key event in determining whether an endothelial cell survives or undergoes programmed cell death.  相似文献   

12.
We have previously demonstrated that tissue plasminogen activator (tPA) plays an important role through the conversion of plasminogen to plasmin in the release of dopamine in the nucleus accumbens (NAc) evoked by depolarization or the systemic administration of drugs of abuse such as morphine and nicotine. In the present study, we examined the mechanisms by which drugs of abuse increase extracellular tPA activity in the NAc in vivo using in situ zymography. The dopamine D1 receptor (D1R) agonist SKF38393, but not D2 receptor agonist quinpirole, significantly increased extracellular tPA activity in the NAc. The effect of SKF38393 was blocked by pre-treatment with the dopamine D1R antagonist SCH23390. Microinjection of Rp-cAMPs, a protein kinase A inhibitor, into the NAc completely blocked the effect of SKF38393. Systemic administration of morphine and methamphetamine increased extracellular tPA activity in the NAc, and these effects were completely blocked by pre-treatment with SCH23390 and raclopride. The results suggest that activation of post-synaptic dopamine D1Rs in the NAc leads to an increase in extracellular tPA activity via protein kinase A signaling. Furthermore, dopamine D2 receptors are also involved in the release of tPA induced by morphine and methamphetamine.  相似文献   

13.
In the present study we used LLC-PK1 cells, a porcine renal proximal tubular cell line, to investigate whether PI3 kinase activation was involved in the anti-apoptotic effect of ouabain, a specific inhibitor of Na,K-ATPase. Apoptosis was induced by actinomycin D (Act D, 5 microM) and assessed by appearance of hypodiploid nuclei and DNA fragmentation. Ouabain attenuated Act D-induced apoptotic response in a dose-dependent manner. Incubation in a low K(+) medium (0.1 mM) which is another way to decrease Na,K-ATPase activity also had anti-apoptotic effect. Both ouabain and low K(+) medium increased the PI3 kinase activity in p85 immunoprecipitates. Ouabain, as well as incubation in the low K(+) medium, also increased the phosphorylation of Akt. Inhibition of PI3 kinase by either wortmannin or LY294002 reversed the cytoprotective effect of ouabain. These data together indicate that inhibition of Na,K-ATPase activates PI3 kinase in LLC-PK1 cells which could then exert the cytoprotective effect.  相似文献   

14.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

15.
Although thrombolytic effects of tissue plasminogen activator (tPA) are beneficial, its neurotoxicity is problematic. Here, we report that tPA potentiates apoptosis in ischemic human brain endothelium and in mouse cortical neurons treated with N-methyl-D-aspartate (NMDA) by shifting the apoptotic pathways from caspase-9 to caspase-8, which directly activates caspase-3 without amplification through the Bid-mediated mitochondrial pathway. In vivo, tPA-induced cerebral ischemic injury in mice was reduced by intracerebroventricular administration of caspase-8 inhibitor, but not by caspase-9 inhibitor, in contrast to controls in which caspase-9 inhibitor, but not caspase-8 inhibitor, was protective. Activated protein C (APC), a serine protease with anticoagulant, anti-inflammatory and antiapoptotic activities, which is neuroprotective during transient ischemia and promotes activation of antiapoptotic mechanisms in brain cells by acting directly on endothelium and neurons, blocked tPA vascular and neuronal toxicities in vitro and in vivo. APC inhibited tPA-induced caspase-8 activation of caspase-3 in endothelium and caspase-3-dependent nuclear translocation of apoptosis-inducing factor in NMDA-treated neurons and reduced tPA-mediated cerebral ischemic injury in mice. Data suggest that tPA shifts the apoptotic signal in stressed brain cells from the intrinsic to the extrinsic pathway which requires caspase-8. APC blocks tPA's neurovascular toxicity and may add substantially to the effectiveness of tPA therapy for stroke.  相似文献   

16.
Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation factor that generally causes growth inhibition, differentiation and/or apoptosis. In this study, we demonstrate that RA not only affects mouse RPC differentiation but also improves cell survival by reducing spontaneous apoptotic rate without affecting RPC proliferation. The enhanced cell survival was accompanied by a significant upregulation of the expression of protein kinase A (PKA) and several protein kinase C (PKC) isoforms. Treatment of cells grown in RA-free media with 8-bromoadenosine3',5'-cyclic monophosphate, a known activator of PKA, resulted in an anti-apoptotic effect similar to that caused by RA; whereas the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesul- fonamide dihydrochloride led to a significant (-32%) increase in apoptosis. In contrast, treatment of RPCs with any of two PKC selective inhibitors, 2,2',3,3',4,4'-hexahydroxy-1,1 '-biphenyl-6,6'-dimethanol dimethyl ether and bisindolylmaleimide XI, led to diminished apoptosis; while a PKC activator, phorbol 12-myristate 13-acetate, increased apoptosis. These and other data suggest that the effect of RA on RPC survival is mostly due to the increased anti-apoptotic activity elicited by PKA, which might in turn be antagonized by PKC. Such a mechanism is a new example of tight regulation of important biological processes triggered by RA. Although the detailed mechanisms remain to be elucidated, we provide evidence that the pro-survival effect of RA on RPCs is not mediated by changed expression of p53 or bcl-2, and appears to be independent of 15-amyloid, Fas ligand, TNF-α, ganglioside GM1 and ceramide C 16-induced apoptotic pathways.  相似文献   

17.
Tamura Y  Simizu S  Osada H 《FEBS letters》2004,569(1-3):249-255
Bcl-2 protein play important roles in the regulation of apoptosis. We previously reported that the phosphorylation of Bcl-2 was augmented by treatment with protein phosphatase 2A (PP2A) inhibitor; however, the kinase responsible for Bcl-2 phosphorylation had not yet been identified. In this study, we identified extracellular-signal-regulated kinase (ERK) as the responsible kinase for the phosphorylation of Bcl-2. We also found that the transmembrane region (TM) deleted form of Bcl-2 (Bcl-2DeltaTM), which was unable to localize on the mitochondria was constitutively phosphorylated, whereas wild-type Bcl-2 that localized on the mitochondria, was present in its hypophosphorylated form. The phosphorylation of Bcl-2DeltaTM was retarded by treatment with MAP kinase ERK kinase (MEK) inhibitor and PP2A did not bind to Bcl-2DeltaTM. These observations suggest that Bcl-2DeltaTM is constitutively phosphorylated by ERK, but is not dephosphorylated by PP2A in human tumor cell lines. The phosphorylation of Bcl-2 resulted in a reduction in anti-apoptotic function, implying that dephosphorylation promoted the anti-apoptotic activity of Bcl-2 protein in human tumor cell lines. Thus, the present findings suggest that ERK and PP2A are physiological regulators of Bcl-2 phosphorylation, and these enzymes exert an influence on the anti-apoptotic function of Bcl-2.  相似文献   

18.
The secreted growth factor pleiotrophin (PTN) can induce mitogenesis in cells that express the receptor for this growth factor, anaplastic lymphoma kinase (ALK). Here we examine the ability of PTN to produce anti-apoptotic signals. We demonstrate that PTN is a survival factor for SW-13 epithelial cells and show that ribozyme-mediated depletion of ALK from SW-13 cells abolishes this effect of PTN. Furthermore, in serum-starved NIH3T3 fibroblasts PTN prevents apoptosis (measured by annexin V staining) with an EC(50) of 0.2 ng/ml and induces cell growth at higher concentrations of PTN. A polyclonal antibody against the PTN ligand-binding domain of the ALK receptor (alpha-LBD) was a partial agonist for ALK in NIH3T3 cells. This alpha-LBD antibody showed high agonist activity for anti-apoptosis (56 +/- 9% relative to PTN), low agonist activity for cell growth (21 +/- 1% relative to PTN), and was an antagonist of PTN-induced cell growth (61 +/- 2% inhibition). Both MAP kinase and phosphatidylinositol (PI) 3-kinase cascades in NIH3T3 cells were activated by PTN, and this effect persisted for up to 3 h. Surprisingly, the anti-apoptotic effect of PTN was completely blocked by the MAP kinase inhibitor UO126, but was not affected by the PI 3-kinase inhibitor LY294002. In contrast, PTN-dependent cell growth required both MAPK and PI 3-kinase activity. We conclude that anti-apoptotic signaling of PTN through ALK in NIH3T3 fibroblasts is via the MAP kinase pathway.  相似文献   

19.
During ovarian follicle growth, there is expansion of the basal lamina and changes in the follicular extracellular matrix (ECM) that are mediated in part by proteolytic enzyme cascades regulated by tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA). One PA inhibitor, serine protease inhibitor-E2 (SERPINE2) is expressed in granulosa but not theca cells, and expression changes with follicle development. In this study, we hypothesized that PA and SERPINE2 expression/secretion by granulosa cells are regulated by FSH and growth factors. SERPINE2 mRNA and protein levels, tPA gene expression and uPA secretion were stimulated by FSH. Insulin-like growth factor-I stimulated SERPINE2 secretion and uPA activity, and decreased secreted tPA activity and gene expression. Bone morphogenetic protein-7 increased SERPINE2 secretion and expression and tPA secretion. In contrast, fibroblast growth factor-2 inhibited tPA secretion and SERPINE2 secretion and expression. Epidermal growth factor inhibited SERPINE2 secretion and expression, but increased secreted tPA activity. Estradiol and SERPINE2 secretion were highly positively correlated, but estradiol did not alter SERPINE2 expression. These data demonstrate that SERPINE2 expression and protein secretion are regulated by FSH and growth factors in non-luteinizing bovine granulosa cells. As estradiol is a known marker of follicle health, and SERPINE2 is an anti-apoptotic factor, we propose that SERPINE2 is involved in the regulation of atresia in bovine follicles.  相似文献   

20.
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38alpha mitogen-activated protein kinase (MAPK) activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at 3 days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene, which prevents apoptosis of early differentiated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号