首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The relative expression of connexin43 and connexin45 modulates gap junctional communication and production of bone matrix proteins in osteoblastic cells. It is likely that changes in gap junction permeability are determined by the interaction between these two proteins. Cx43 interacts with ZO-1, which may be involved in trafficking of Cx43 or facilitating interactions between Cx43 and other proteins. In this study we sought to identify proteins that associate with Cx45 by coprecipitation in non-denaturing conditions. Cx45 was isolated with a 220-kDa protein that we identified as ZO-1. Under the same conditions, Cx43 also was isolated with anti-Cx45 antiserum from Cx45-transfected ROS cells (ROS/Cx45 cells). Cx43 antiserum could also coprecipitate ZO-1 in the transfected and untransfected ROS cells. Double label immunofluorescence studies showed that ZO-1, Cx43, and Cx45 colocalized at appositional membranes in ROS/Cx45 cells suggesting that all three proteins are normally associated in the cells. Additionally, we found that in vitro translated ZO-1 binds to the carboxyl-terminal of Cx45 indicating that there is a direct interaction between the carboxyl-terminal of Cx45 and ZO-1. These studies demonstrate that ZO-1 interacts with Cx45 as well as with Cx43, and suggest that the interaction of connexins with ZO-1 may play a role in regulating the composition of the gap junction and may modulate connexin-connexin interactions.  相似文献   

2.
Connexin43(Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.  相似文献   

3.
Connexin43 (Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.  相似文献   

4.
Connexin43(Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.  相似文献   

5.
Many cells express multiple connexins, the gap junction proteins that interconnect the cytosol of adjacent cells. Connexin43 (Cx43) channels allow intercellular transfer of Lucifer Yellow (LY, MW = 443 D), while connexin45 (Cx45) channels do not. We transfected full-length or truncated chicken Cx45 into a rat osteosarcoma cell line ROS-17/2.8, which expresses endogenous Cx43. Both forms of Cx45 were expressed at high levels and colocalized with Cx43 at plasma membrane junctions. Cells transfected with full-length Cx45 (ROS/Cx45) and cells transfected with Cx45 missing the 37 carboxyl-terminal amino acids (ROS/Cx45tr) showed 30-60% of the gap junctional conductance exhibited by ROS cells. Intercellular transfer of three negatively charged fluorescent reporter molecules was examined. In ROS cells, microinjected LY was transferred to an average of 11.2 cells/injected cell, while dye transfer between ROS/Cx45 cells was reduced to 3.9 transfer between ROS/Cx45 cells was reduced to 3.9 cells. In contrast, ROS/Cx45tr cells transferred LY to > 20 cells. Transfer of calcein (MW = 623 D) was also reduced by approximately 50% in ROS/Cx45 cells, but passage of hydroxycoumarin carboxylic acid (HCCA; MW = 206 D) was only reduced by 35% as compared to ROS cells. Thus, introduction of Cx45 altered intercellular coupling between cells expressing Cx43, most likely the result of direct interaction between Cx43 and Cx45. Transfection of Cx45tr and Cx45 had different effects in ROS cells, consistent with a role of the carboxyl-terminal domain of Cx45 in determining gap junction permeability or interactions between connexins. These data suggest that coexpression of multiple connexins may enable cells to achieve forms of intercellular communication that cannot be attained by expression of a single connexin.  相似文献   

6.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

7.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

8.
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell–cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P1 phosphorylated and P0 unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.  相似文献   

9.
Connexin alpha1Cx43 has previously been shown to bind to the PDZ domain-containing protein ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins alpha3Cx46 and alpha8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be highly expressed in mouse lenses. Colocalization of ZO-1 with alpha3Cx46 and alpha8Cx50 connexins in fiber cells was demonstrated by immunofluorescence and by fracture-labeling electron microscopy but showed regional variations throughout the lens. ZO-1 was found to coimmunoprecipitate with alpha3Cx46 and alpha8Cx50, and pull-down experiments showed that the second PDZ domain of ZO-1 was involved in this interaction. Transiently expressed alpha3Cx46 and alpha8Cx50 connexins lacking the COOH-terminal residues did not bind to the second PDZ domain but still formed structures resembling gap junctions by immunofluorescence. These results indicate that ZO-1 interacts with lens fiber connexins alpha3Cx46 and alpha8Cx50 in a manner similar to that previously described for alpha1Cx43. The spatial variation in the interaction of ZO-1 with lens gap junctions is intriguing and is suggestive of multiple dynamic roles for this association.  相似文献   

10.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

11.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

12.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   

13.
Mutations in the genes that encode Connexin 26 (GJB2) and Connexin 30 (GJB6) are the most common known cause of hereditary nonsyndromic sensorineural deafness. Cx26 and Cx30 share a similar protein structure, as well as the same expression distribution pattern in the cochlea. Cx26 has different intracellular trafficking properties compared to those of Cx43 and Cx32, whose trafficking manner is consistent with the classical membrane protein secretory pathway. Until now, however, the trafficking patterns of Cx30 have not been studied. By means of an immunofluorescence staining approach, we found that the targeting of Cx30 to gap junctions in transfected HeLa cells is not affected by brefeldin A, suggesting a Golgi-independent feature, similar to Cx26. Nocodazole had a minimal effect on assembly and distribution of Cx30 gap junctions. Cytochalasin B-induced actin filament depolymerization, however, affected both the pattern and the distribution of Cx30 gap junctions. Co-localization with and/or interaction between Cx30 and microtubules and cortical actin filaments, but not with the tight/adherens junction protein ZO-1, was confirmed by immunofluorescence and/or immunoprecipitation methods. The results suggest that the cytoskeleton, and especially actin filaments, are important components in the processes of assembly, trafficking and stabilization of Cx30 gap junctions.  相似文献   

14.
《FEBS letters》2014,588(8):1249-1258
The gap junction family of proteins is widely expressed in mammalian cells and form intercellular channels between adjacent cells, as well as hemichannels, for transport of molecules between the cell and the surrounding environment. In addition, gap junction proteins have recently been implicated as important for the regulation of cell adhesion and migration in a variety of cell types. The gap junction protein connexin43 (Cx43) regulates B lymphocyte adhesion, BCR- and LFA-1-mediated activation of the GTPase Rap1, and cytoskeletal rearrangements resulting in changes to cell shape and membrane spreading. We demonstrate here that the actin cytoskeleton is important for the distribution of Cx43 in the B cell plasma membrane and for other cell processes involving the cytoskeleton. Using shRNA knockdown of Cx43 in B lymphoma cells we show that Cx43 is also necessary for chemokine-mediated Rap 1 activation, motility, CXCL12-directed migration, and movement across an endothelial cell monolayer. These results demonstrate that in addition to its role in B cell spreading, Cx43 is an important regulator of B-cell motility and migration, processes essential for normal B-cell development and immune responses.  相似文献   

15.
Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4?μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.  相似文献   

16.
RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and an enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs.  相似文献   

17.
Gap junction channels play an important role in cell growth control, secretion and embryonic development. Gap junctional communication and channel assembly can be regulated by protein-protein interaction with kinases and phosphatases. We have utilized tandem mass spectrometry (MS/MS) sequence analysis as a screen to identify proteins from cell lysates that interact with the C-terminal cytoplasmic region of connexin 43 (Cx43). MS/MS analysis of tryptic fragments yielded several proteins including zona occludens-1 (ZO-1), a structural protein previously identified to interact with Cx43, and ZO-2, a potential novel interacting partner. We confirmed the interaction of ZO-2 with Cx43 by using a combination of fusion protein "pull down," co-immunoprecipitation, and co-localization experiments. We show that the C-terminal region of Cx43 is necessary for interaction with the PDZ2 domain of ZO-2. Far Western analysis revealed that ZO-2 can directly bind to Cx43 independent of other interacting partners. Immunofluorescence studies indicate that both ZO-1 and ZO-2 can co-localize with Cx43 within the plasma membrane at apparent gap junctional structures. We examined Cx43 interaction with ZO-1 and ZO-2 at different stages of the cell cycle and found that Cx43 had a strong preference for interaction with ZO-1 during G0, whereas ZO-2 interaction occurred approximately equally during G0 and S phases. Since essentially all of the Cx43 in G0 cells is assembled into Triton X-100-resistant junctions, Cx43-ZO-1 interaction may contribute to their stability.  相似文献   

18.
Gap junctions are composed of connexins that form transmembrane channels between adjacent cells. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated in the regulation of Cx43 channel gating. Interestingly, channel-independent processes regulated by Cx43 have also been postulated. In our studies to elucidate the mechanism of Cx43 channel gating by growth factors and to explore additional functions of gap junctions, we have identified three interacting partners of the C-terminal tail of Cx43 (Cx43CT). (i) the c-Src tyrosine kinase, which phosphorylates Cx43CT and is involved in G protein-mediated inhibition of Cx43 gap junctional communication, (ii) the ZO-1 ‘scaffold’ protein, which might recruit signaling proteins into Cx43-based gap junctions. (iii) microtubules (consisting of α/β-tubulin dimers), which extend with their distal ends to Cx43-based gap junctions, suggesting that Cx43 gap junctions may play a novel role in regulating microtubule stability in contacted cells. Here we show that Cx43 binds α-tubulin equally well as β-tubulin. In addition, we show that the second, but not the first, PDZ domain of ZO-1 binds directly to Cx43, and we confirm that the very C-terminal isoleucine residue of Cx43 is critical for ZO-1 binding.  相似文献   

19.
Connexin37 (Cx37) forms gap junction channels between endothelial cells, and two polymorphic Cx37 variants (Cx37-S319 and Cx37-P319) have been identified with a possible link to atherosclerosis. We studied the gap junction channel properties of these hCx37 polymorphs by expression in stably transfected communication-deficient cells (N2A and RIN). We also expressed a third, truncated variant (Cx37-fs254Delta293) and Cx37 constructs containing epitope tags added to their amino or carboxyl termini. All Cx37 constructs were produced by the transfected cells as demonstrated by RT-PCR and immunoblotting and trafficked to appositional surfaces between cells as demonstrated by immunofluorescence microscopy. Dual whole cell patch-clamping studies demonstrated that Cx37-P319, Cx37-S319, and Cx37-fs254Delta293 had large unitary conductances ( approximately 300 pS). However, addition of an amino terminal T7 tag (T7-Cx37-fs254Delta293) produced a single channel conductance of 120-145 pS with a 24-30 pS residual state. Moreover, the kinetics of the voltage-dependent decline in junctional current for T7-Cx37-fs254Delta293 were significantly slower than for the wild type, implying a destabilization of the transition state. These data suggest that the amino terminus of Cx37 plays a significant role in gating as well as conductance. The carboxyl terminal tail has lesser influence on unitary conductance and inactivation kinetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号