首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
人工湿地与环境卫生安全   总被引:3,自引:0,他引:3  
徐敏  宋志文  杨光  昌晶  吴蕾  闫逊 《生态学杂志》2007,26(11):1873-1877
人工湿地是国内外应用较为广泛的一种污水处理技术。近年来,人工湿地的环境卫生安全问题越来越受到人们的关注。人工湿地中病原微生物的去除或失活受到诸多因素的影响,其过程和机制与传统的二级污水处理工艺有较大区别,选择适宜的指示微生物和病原微生物并研究其行为是进行人工湿地环境卫生安全评价的关键。本文论述了病原微生物在人工湿地中的归宿以及人工湿地可能对环境卫生安全造成的影响,综述了国内外的研究现状,指出了该方面研究的必要性和迫切性。  相似文献   

2.
Background, aim, and scope  Management of the medical waste produced in hospitals or health care facilities has raised concerns relating to public health, occupational safety, and the environment. Life cycle assessment (LCA) is a decision-supporting tool in waste management practice; but relatively little research has been done on the evaluation of medical waste treatment from a life cycle perspective. Our study compares the environmental performances of two dominant technologies, hazardous waste incineration (HWI) as a type of incineration technology and steam autoclave sterilization with sanitary landfill (AL) as a type of non-incineration technology, for specific medical waste of average composition. The results of this study could support the medical waste hierarchy. Materials and methods  This study implemented the ISO 14040 standard. Data on steam autoclave sterilization were obtained from an on-site operations report, while inventory models were used for HWI, sanitary landfill, and residues landfill. Background data were from the ecoinvent database. The comparative LCA was carried out for five alternatives: HWI with energy recovery efficiencies of 0%, 15%, and 30% and AL with energy recovery efficiencies of 0% and 10%. Results  The assumptions on the time frame for landfill markedly affect the impact category scores; however, the orders of preference for both time frames are almost the same. HWI with 30% energy recovery efficiency has the lowest environmental impacts for all impact categories, except freshwater ecotoxicity. Incineration and sanitary landfill processes dominate global warming, freshwater aquatic ecotoxicity, and eutrophication of incineration and non-incineration alternatives, respectively. Dioxin emissions contribute about 10% to human toxicity in HWI without energy recovery alternatives, and a perturbation analysis yielded identical results. As regards eutrophication, non-incineration treatments have an approximately sevenfold higher impact than incineration treatments. Discussion  The differences between short-term and long-term time frame assumptions mainly are decided by heavy metals dissolved in the future leachate. The high heat value of medical waste due to high contents of biomass, plastic, and rubber materials and a lower content of ash, results in a preference for incineration treatments. The large eutrophication difference between incineration and non-incineration treatments is caused by different N element transformations. Dioxin emission from HWI is not the most relevant to human toxicity; however, large uncertainties could exist. Conclusions  From a life cycle perspective, the conventional waste hierarchy, implying incineration with energy recovery is better than landfill, also applies to the case of medical waste. The sanitary landfill process is the key issue in non-incineration treatments, and HWI and the subsequent residues landfill processes are key issues in incineration treatments. Recommendations and perspectives  Integrating the medical waste hierarchy and constructing a medical waste framework require broader technologies to be investigated further, based on a life cycle approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
A comparison of various waste‐solvent treatment technologies, such as distillation (rectification) and incineration in hazardous‐waste‐solvent incinerators and cement kilns, is presented for 45 solvents with respect to the environmental life‐cycle impact. The environmental impact was calculated with the ecosolvent tool that was previously described in Part I of this work. A comprehensive sensitivity analysis was performed, and uncertainties were quantified by stochastic modeling in which various scenarios were considered. The results show that no single treatment technology is generally environmentally superior to any other but that, depending on the solvent mixture and the process conditions, each option may be optimal in certain cases. Nevertheless, various rules of thumb could be derived, and a results table is presented for the 45 solvents showing under which process conditions and amount of solvent recovery distillation is environmentally superior to incineration. On the basis of these results and the ecosolvent tool, an easily usable framework was developed that helps decision makers in chemical industries reduce environmental burdens throughout the solvent life cycle. With clear recommendations on the environmentally optimized waste‐solvent treatment technology, the use of this framework contributes to more environmentally sustainable solvent management and thus represents a practical application of industrial ecology.  相似文献   

4.
Plastics recycling, especially as prescribed by the German Ordinance on Packaging Waste (Verpackungsverordnung), is a conspicuous example of closing material loops on a large scale. In Germany, an industry‐financed system (Duales System Deutschland) was established in 1991 to collect and recycle packaging waste from households. To cope with mixed plastics, various “feedstock‐recycling” processes were developed. We discuss the environmental benefits and the cost‐benefit ratio of the system relative to municipal solid waste (MSW) incineration, based on previously published life‐cycle assessment (LCA) studies. Included is a first‐time investigation of energy recovery in all German incinerators, the optimization opportunities, the impact on energy production and substitution processes, an estimation of the costs, and a cost‐benefit assessment. In an LCA, the total environmental impact of MSW incineration is mainly determined by the energy recovery ratio, which was found on average to reach 39% in current German incineration plants. Due to low revenues from additional energy generation, it is not cost‐effective to optimize the plants energetically. Energy from plastic incineration substitutes for a specific mixture of electric base‐load power, district heating, and process steam generation. Any additional energy from waste incineration will replace, in the long term, mainly natural gas, rather than coal. Incineration of plastic is compared with feedstock recycling methods in different scenarios. In all scenarios, the incineration of plastic leads to an increase of CO2 emissions compared to landfill, whereas feedstock recycling reduces CO2 emissions and saves energy resources. The costs of waste incineration are assumed to decrease by about 30% in the medium term. Today, the calculated costs of CO2 reduction in feedstock recycling are very high, but are ex‐pected to decline in the near future. Relative to incineration, the costs for conserving energy via feedstock recycling are 50% higher, but this gap will close in the near future if automatic sorting and processing are implemented in Germany.  相似文献   

5.
Over the past few years, new technologies for nitrogen removal have been developed mainly because of the increasing financial costs of the traditional wastewater treatment technologies. Newly discovered pathways, like the anaerobic oxidation of ammonium (ANAMMOX), and uses for nitrogen removal technologies are under discussion. Processes and technologies such as: Partial nitrification; Single reactor systems for High Ammonium Removal Over Nitrite (SHARON); Anammox; Aerobic/anoxic deammonification; Oxygen Limited Autotrophic Nitrification‐Denitrification (OLAND); Completely Autotrophic Nitrogen Removal Over Nitrite (CANON); wetland based systems, all have a high potential for nitrogen removal. However, the pathways of nitrogen transformation processes are very complex. An understanding of how various environmental factors affect these processes and a sound knowledge of existing, worldwide experience pertaining to these novel technologies are the key if the nitrogen removal rates are to be improved and success is to be realized in full‐scale applications. This review describes the present knowledge of the new treatment technologies for wastewater with high nitrogen loads. Special emphasis is given to the influence of environmental factors and the reactor configuration on the nitrogen transformation process and microbial activity.  相似文献   

6.
Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive.  相似文献   

7.
Background, Aims and Scope Huge amounts of sewage sludge, that need to be handled, are generated all around the world from wastewater treatment plants and its management in an economically and environmentally acceptable way has become a matter of increasing importance during the last few years. In this paper, we make use of Life Cycle Assessment (LCA) to compare biological and thermal processes, that is to say, anaerobic digestion versus pyrolysis and incineration. This paper will complete the analysis performed in a wastewater treatment plant, where sludge post-treatment was identified as one of the main contributors to the environmental impact on the global system. Methods LCA is a tool for evaluating the environmental performance of goods as well as processes or services (collectively termed products). ISO 14040 defines LCA as a compilation and evaluation of the inputs, outputs and the potential environmental impacts of a system throughout its life cycle: from the production of raw materials to the disposal of the waste generated. In this study, data relating to the actual scenario from an existent wastewater treatment plant were considered. Both bibliographical and real data from existing facilities were used for the thermal processes proposed. The Centre of Environmental Science (CML) of Leiden University's methodology was chosen to quantify the potential environmental impacts associated with the different scenarios under study. The software SimaPro 5.1 was used and CML factors (updated in 2002) were chosen for characterisation and normalisation stages. Results and Discussion In a previous study, sewage sludge was found to be a critical point in the environmental performance of a wastewater treatment plant, so different alternatives have been tackled here. Anaerobic digestion followed by land application of pasty sludge comprises both energy recovery and nutrient recovery. Other thermal processes, such as incineration or pyrolysis, allow energy recovery (both electrical and thermal) and, although nutrients are lost, new co-products are produced (tar and char at pyrolysis). Here, the most adverse case (that is to say, the total amount of heavy metals is supposed to be released from the sludge and reach the environment) was applied to consider the most negative impact due to sludge spreading in agricultural soils; so more research is required in order to establish the precise amount of heavy metals that is effectively uptaken by the plants and crops as well as the amount that is transferred to another phase as a leachate. Thermal processes are presented here as a good option to recover energy from the sludge; although the value of nutrients is lost. Tar and char, co-products from pyrolysis, are good examples that were evaluated here, recycling of bottom ashes from sludge incineration or manufacture of ceramic materials from sludge are other options to be studied in the near future. Conclusion During the last few years, several opinions have been declared in favour of land application, incineration or pyrolysis, but many voices have also spoken out against each one. To obtain general conclusions for an overall comparison of different post-treatment of urban wastewater sludge is not easy as there are many contradictory aspects. The most effective utilisation of sewage sludge implies both energy and material re-use, but this is not always possible. Nevertheless, we think that land application of digested sludge is an acceptable option, probably not the best but at least a good one, for sludge treatment as long as efforts are focused on the minimisation of heavy metal content in the final cake.  相似文献   

8.
Abstract: A case study of the chlor-alkali industry in Western Europe and Japan is presented examining the effects of environmental regulation on technological change. In Western Europe, standards were set for mercury emissions from chlor-alkali plants, which were gradually tightened subsequently. Research and development (R&D) efforts were directed to end-of-pipe technologies as well as process improvements for reducing mercury emissions, rather than to clean technologies, which eliminate mercury from within the production process. With a significant reduction in mercury emissions with end-of-pipe technologies, new plants continued to be built that relied on the mercury process. As long as these relatively new plants could be utilized, technological transition to the clean ion-exchange membrane process remained slow. The success in reducing mercury emissions with end-of-pipe technologies, in effect, helped to prolong the lifetime of the existing mercury process. In Japan, the government introduced policies to phase out the existing mercury process. The strict approach encouraged innovative companies to make R&D efforts on clean technologies, instead of end-of-pipe technologies for pollution abatement. Applied in a hasty and inflexible way, however, the stringent regulation initially induced most of the chlor-alkali producers to choose the diaphragm process, which later turned out to be inappropriate. After the regulatory schedule was modified to allow more time for process conversion, the remaining mercury-based plants were converted directly to the most efficient ion-exchange membrane process. The technological transition, however, was costly, as most of the diaphragm-based plants introduced following the regulatory mandate were operated only for a short period of time, with the large investment wasted.  相似文献   

9.
Integrated Environmental and Economic Assessment of Products and Processes   总被引:1,自引:0,他引:1  
The eco-efficiency analysis method developed and used by the Öko-Institut analyzes different alternatives that fulfill a defined consumer need, from an environmental as well as an economic perspective.
Like life-cycle assessment (LCA), eco-efficiency analysis makes possible the setting of priorities in purchasing decisions or can be used to show optimization potentials in product development processes.
Eco-efficiency analysis builds upon two methods: LCA, according to ISO 14040 ff. (to assess the environmental aspects of products and processes), and life-cycle costing. Life-cycle costing results in a single figure—the total costs of ownership to one or several actors. The environmental impacts can be evaluated and aggregated as a single score or the impact category indicator results can be kept separate. In either case two single scores can be compared: the total environmental burden or the impact category indicator results, and the total costs of ownership of the alternatives under consideration.
The results can then be plotted in two-dimensional graphs that show the effectiveness of certain measures in environmental and economic terms. The efficiency is expressed as a numerical ratio of environmental savings to difference in costs.
Together with furnishing more detailed results and a discussion of additional benefits or potential barriers, eco-efficiency analysis broadens the basis for decision-making processes.  相似文献   

10.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

11.
Sludge minimisation technologies   总被引:1,自引:0,他引:1  
The treatment and disposal of excess sludge represents a bottleneck of wastewater treatment plants all over the world, due to environmental, economic, social and legal factors. There is therefore a growing interest in developing technologies to reduce the wastewater sludge generation. The goal of this paper is to present the state-of-the-art of current minimisation techniques for reducing sludge production in biological wastewater treatment processes. An overview of the main technologies is given considering three different strategies: The first option is to reduce the production of sludge by introducing in the wastewater treatment stage additional stages with a lower cellular yield coefficient compared to the one corresponding to the activated sludge process (lysis-cryptic growth, uncoupling and maintenance metabolism, predation on bacteria, anaerobic treatment). The second choice is to act on the sludge stage. As anaerobic digestion is the main process in sewage sludge treatment for reducing and stabilising the organic solids, two possibilities can be considered: introducing a pre-treatment process before the anaerobic reaction (physical, chemical or biological pre-treatments), or modifying the digestion configuration (two-stage and temperature-phased anaerobic digestion, anoxic gas flotation). And, finally, the last minimisation strategy is the removal of the sludge generated in the activated sludge plant (incineration, gasification, pyrolysis, wet air oxidation, supercritical water oxidation).  相似文献   

12.
Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.  相似文献   

13.
Goal, Scope and Background Telephony as well as remote data transfer is increasingly performed via mobile phone networks. However, the environmental consequences, in particular of the End-of-Life (EOL) treatment, of such network infrastructures have been investigated insufficiently to date. In the present report the environmental implications of the EOL treatment of a single GSM 900 antenna rack have been analysed. Methods Based on comprehensive inventories of a GSM 900 antenna station rack and currently applied EOL treatment, the environmental impacts related to the EOL treatment of the rack are investigated. Six different EOL treatment scenarios are developed to find an environmentally safe treatment alternative. System expansion, i.e. inclusion of the production phase, is applied to all scenarios in order to consider different amounts of regained materials. Results and Discussion The production of primary rack materials, especially that of palladium (accounts for almost 40% of the ecotoxicity impact category), to substitute lost materials dominates the overall environmental impact. Releases of heavy metals from landfilled rack components / materials and of by-products to the environment greatly influence the overall impacts on human health and ecosystem quality. The final disposal of rack components contributes to about 70% of the non-carcinogenic effects. Landfilled dust from steel production contributes to nearly 11% of this impact category. Conclusion The results suggest that all precious metals containing electronic scrap should be treated in specially equipped metal recovery plants. A complete rack disassembly before processing in high-standard metal recovery plants is not necessary. An elaborated pre-treatment and fractionation of the scrap prior to precious material recovery does not lower the environmental impacts and is not mandatory and would only become environmentally interesting if high recovery of heavy metals is achieved. To avoid the formation and release of volatile and toxic heavy metal, incineration of electronic scrap as of by-products prior to landfilling should be avoided. To reduce the overall environmental load, a standardisation of the sizes of rack components, facilitating their re-use, is recommended.  相似文献   

14.
生物干燥是对城市垃圾的一种预处理技术。它是利用生物反应放热来干燥城市垃圾,以改善其燃烧特性。经常用于在机械生物处理工厂干燥城市垃圾。生物干燥技术与堆肥工艺不同,它旨在干燥和保留垃圾基质中的生物质含量。在生物干燥反应器中主要干燥机制为空气对流蒸发,而物料的物理特性对干燥效果也有一定影响。反应器通风系统的类型的选择也是生物干燥的一个重要的影响因素。本文主要介绍了影响生物干燥过程的各项因素和研究进展。  相似文献   

15.
Global population growth and rising living standards are increasing apparel consumption. Consequently, consumption of resources and generation of textile waste are increasing. According to the Swedish Environmental Protection Agency, textile consumption increased by 40% between the years 2000 and 2009 in Sweden. Given that there is currently no textile recycling plant in Sweden, the aim of this article is to explore the potential environmental benefits of various textile recycling techniques and thereby direct textile waste management strategies toward more sustainable options. Three different recycling techniques for a model waste consisting of 50% cotton and 50% polyester were identified and a life cycle assessment (LCA) was made to assess the environmental performance of them. The recycling processes are: material reuse of textile waste of adequate quality; separation of cellulose from polyester using N‐methylmorpholine‐N‐oxide as a solvent; and chemical recycling of polyester. These are compared to incineration, representing conventional textile waste treatment in Sweden. The results show that incineration has the highest global warming potential and primary energy usage. The material reuse process exhibits the best performance of the studied systems, with savings of 8 tonnes of carbon dioxide equivalents (CO2‐eq) and 164 gigajoules (GJ) of primary energy per tonne of textile waste. Sensitivity analyses showed that results are particularly sensitive to the considered yields of the processes and to the choice of replaced products. An integration of these recycling technologies for optimal usage of their different features for treatment of 1 tonne of textile waste shows that 10 tonnes CO2‐eq and 169 GJ of primary energy could be saved.  相似文献   

16.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

17.
Abstract: The software tool ecosolvent is presented that allows for comparative environmental assessment of treatment technologies for specific, user-defined, waste-solvent mixtures. The tool is composed of models for waste-solvent distillation as well as for thermal treatment in hazardous waste-solvent incinerators and cement kilns. It was designed with a tiered structure in order to allow for a high flexibility regarding informational needs. The life-cycle assessment method was used to assess the environmental impact. The applicability of the tool is shown with two case studies from industry. In these case studies, various waste-solvent treatment technologies are compared for two specific waste-solvent mixtures. Potential use of the ecosolvent tool for its role in practical decision making in chemicals industries is illustrated by two case studies of waste-solvent systems. In the ethyl acetate case study, the tool indicates that solvent recovery by distillation is clearly better than incineration of the waste solvent. The results from the methanol case study are less clear-cut. In the subsequent article (part II), the ecosolvent tool will be used to derive general rules of thumb and specific recommendations for 45 important solvents used in chemical industries. Additionally, a framework will be presented that provides quick and easy decision support regarding environmentally optimized waste-solvent management.  相似文献   

18.
BACKGROUND: This investigation examined interactions between expansion of the extracellular fluid volume (ECE), osteopathic lymphatic pump treatment (LPT), and exercise on lymph flow in the thoracic duct of eight instrumented, conscious dogs. METHODS AND RESULTS: After recovery from surgery, LPT was performed for 8 min before and after ECE with normal saline, i.v., 4.4+/-0.3% of body weight. Baseline lymph flow was 1.7+/-0.5 mL/min. LPT rapidly increased lymph flow to 5.0+/-1.1 mL/min at 1 min, and lymph flow remained above baseline for 4 min (p<0.05). LPT produced a net increase in lymph flow of 15.4+/-1.1 mL. Following ECE, baseline lymph flow was 4.8+/-0.6 mL/min (p<0.05). LPT increased lymph flow to 9.9+/-1.1 mL/min at 1 min (p<0.05), and lymph flow remained above baseline for 4 min (p<0.05); all flow values after ECE were greater than corresponding values before ECE. However, the net increase in lymph flow produced by 8 min of LPT (18.3+/-3.8 mL) was not significantly greater than that observed before ECE. Moderate treadmill exercise increased lymph flow for 4 min before ECE and for 6 min after ECE. All lymph flows during exercise were greater after ECE than before ECE. The net increase in lymph flow produced by 8 min of exercise was 24.9+/-5.5 mL before ECE and 39.6+/-5.1 mL after ECE (p<0.05). CONCLUSIONS: Expansion of the extracellular fluid volume produced large increases in thoracic duct lymph flow, that were further augmented by lymphatic pump treatment and by moderate treadmill exercise.  相似文献   

19.
Carbon nanotubes (CNTs) show great potential and bright prospect in the field of environment. It is believed that this new kind of material will bring opportunities and benefits to the environmental protection and pollution control. In recent years, a lot of CNT-based environmental technologies have been developed and applied with successful results, but the adequate understanding and large-scale industrial applications of these technologies are lacking. This paper systematically reviews current environmental applications of CNTs, including pollution treatment and environmental remediation, environmental sample analysis, environmental monitoring and sensing, and design of environment-friendly products. The adopted properties of CNTs are introduced. The main roles of CNTs in these technologies are illustrated. Additionally, the main current challenges to realizing their practical applications are analyzed and discussed, involving toxicity and ecological risks, production costs, general applicability, long-term effect, and public acceptance. Further studies should give priority to the toxicity and environmental risk of CNTs when developing new CNT-based technologies. Research on standardizing toxicity testing and risk assessment of CNTs is highly recommended and a large number of toxicity data of CNTs are needed.  相似文献   

20.
Current attention to improved cook stoves (ICS) focuses on the "triple benefits" they provide, in improved health and time savings for households, in preservation of forests and associated ecosystem services, and in reducing emissions that contribute to global climate change. Despite the purported economic benefits of such technologies, however, progress in achieving large-scale adoption and use has been remarkably slow. This paper uses Monte Carlo simulation analysis to evaluate the claim that households will always reap positive and large benefits from the use of such technologies. Our analysis allows for better understanding of the variability in economic costs and benefits of ICS use in developing countries, which depend on unknown combinations of numerous uncertain parameters. The model results suggest that the private net benefits of ICS will sometimes be negative, and in many instances highly so. Moreover, carbon financing and social subsidies may help enhance incentives to adopt, but will not always be appropriate. The costs and benefits of these technologies are most affected by their relative fuel costs, time and fuel use efficiencies, the incidence and cost-of-illness of acute respiratory illness, and the cost of household cooking time. Combining these results with the fact that households often find these technologies to be inconvenient or culturally inappropriate leads us to understand why uptake has been disappointing. Given the current attention to the scale up of ICS, this analysis is timely and important for highlighting some of the challenges for global efforts to promote ICS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号