首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Nrg1 is a zinc finger protein involved in the glucose repression of several glucose-repressed genes such as STA1, SUC2, and GAL1. Although the molecular details of the Nrg1-mediated repression of STA1 have been partly characterized, it still remains largely unknown how Nrg1 regulates these multiple target genes. In this study, we show that Nrg1 mediates the glucose repression of SUC2 and HXT2 through its direct binding to the specific promoter regions; it binds to the −404 to −360 region of the SUC2 promoter and the −957 to −810 region of the HXT2 promoter. Nrg1 also interacts with the −380 to −250 region of the PCK1 promoter, suggesting that it might also contribute to the PCK1 repression. In addition, ChIP assays confirmed that Nrg1 associated with specific promoter regions of these glucose-repressed genes in vivo. Analysis of the DNA fragments to which it binds indicates that Nrg1 may recognize T/ACCCC sequence within the promoters of these glucose-repressed genes as well as in its own promoter. Collectively, our findings indicate that Nrg1 mediates the glucose repression of multiple genes through its direct binding to the specific promoter regions.  相似文献   

9.
10.
11.
Khalaf RA  Zitomer RS 《Genetics》2001,157(4):1503-1512
We have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号