首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inappropriate eating habits such as skipping breakfast and eating late at night are associated with risk for abnormal weight-gain and adiposity. We previously reported that time-imposed feeding during the daytime (inactive phase) induces obesity and metabolic disorders accompanied by physical inactivity in mice. The present study compares metabolic changes induced in mice by time-imposed feeding under voluntary wheel-running (RW) and sedentary (SED) conditions to determine the effects of voluntary wheel-running activity on obesity induced in mice by feeding at inappropriate times. Mice were individually housed in cages with or without running-wheels. We compared food consumption, core body temperature, hormonal and metabolic variables in the blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and gains in body weight between mice allowed access to food only during the sleep phase (daytime feeding; DF) or only during the active phase (nighttime feeding; NF) under SED or RW conditions. Only a high-fat high-sucrose diet was available to the mice throughout restricted feeding. Nocturnal activity was maintained in both NF and DF mice under RW conditions, but significantly suppressed during the latter half of the dark phase in DF mice. Nocturnal fluctuations in core body temperature were maintained in DF and NF mice under both SED and RW conditions, although DF attenuated the day–night amplitude more under SED, than RW conditions. The degrees of DF-induced increases in body weight gain, food efficiency, adipose tissue mass, lipogenic gene expression in metabolic tissues, and hepatic lipid accumulation were essentially identical between SED and RW conditions. Daytime feeding also induced hyperinsulinemia and hyperleptinemia under both SED and RW conditions, although DF-induced hyperleptinemia was slightly attenuated by wheel-running. The temporal expression of circadian clock genes became synchronized to feeding cycles in the liver but not in the skeletal muscle of mice under both SED and RW conditions. Chronic voluntary exercise on running-wheels minimally affected obesity and adiposity in mice caused by daily feeding at unusual times. The timing of food intake might be more important than physical exercise for preventing metabolic disorders.

Abbreviations: ANOVA: analysis of variance; DF: daytime feeding; FFA: free fatty acid; GLP-1: glucagon-like peptide-1; HOMA-IR: homeostasis model assessment of insulin resistance; NEAT: non-exercise activity thermogenesis; NF: nighttime feeding; RF: restricted feeding; RW: running-wheel; SCN: suprachiasmatic nucleus; SE: standard error of the mean; SED: sedentary; SPA: spontaneous physical activity; T-Cho: total cholesterol; TG: triglyceride; WAT: white adipose tissues  相似文献   


3.
《Chronobiology international》2013,30(9-10):1735-1753
Acute thrombotic events frequently occur in the early morning among hyperlipidemic patients. The activity of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of the fibrinolytic system, oscillates daily, and this is considered one mechanism that underlies the morning onset of acute thrombotic events in hyperlipidemia. Although several studies have reported the expression of the PAI-1 gene is under the control of the circadian clock system, the molecular mechanism of the circadian transactivation of PAI-1 gene under hyperlipidemic conditions remains to be elucidated. Here, the authors investigated whether hyperlipidemia induced by a high-fat diet (HFD) enhances the daily oscillation of plasma PAI-1 activity in mice. The mRNA levels of the PAI-1 gene were increased and rhythmically fluctuated with high-oscillation amplitude in the livers of wild-type mice fed with the HFD. Circadian expression of proxisome proliferator-activated receptor-α (PPARα) mRNA was also augmented as well as that of PAI-1. Chromatin immunoprecipitaion showed the HFD-induced hyperlipidemia significantly increased the binding of PPARα to the PAI-1 promoter. Luciferase reporter analysis using primary hepatocytes revealed CLOCK/BMAL1-mediated PAI-1 promoter activity was synergistically enhanced by cotransfection with PPARα/retinoid X receptor-α (RXRα), and this synergistic transactivation was repressed by negative limbs of the circadian clock, PERIOD2 and CRYPTOCHROME1. As expected, HFD-induced PAI-1 mRNA expression was significantly attenuated in PPARα-null mice. These results suggest a molecular link between the circadian clock and lipid metabolism system in the regulation of PAI-1 gene expression, and provide an aid for understanding why hyperlipidemia increases the risk of acute thrombotic events in the morning. (Author correspondence: )  相似文献   

4.
5.
An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression in the fatty liver.  相似文献   

6.
Fibroblast growth factor 21 (FGF21) is a key metabolic regulator that is induced by fasting and starvation, and its expression is thought to be regulated by the circadian clock in the liver. To evaluate the functional role of FGF21 in the circadian regulation of physiology and behavior, we examined the temporal expression profiles of Fgf21 and circadian clock genes in addition to behavioral activity rhythms under adlibitum feeding (ALF) and time-imposed restricted feeding (RF) in mice. Four hours of daily restricted feeding during the daytime induced over an 80-fold increase in feeding-dependent rhythmic Fgf21 mRNA expression in epididymal white adipose tissue (eWAT), although the expression levels were continuously increased 10-fold in the liver of wild-type (WT) mice. Refeeding subsequent to transient fasting revealed that refeeding but not fasting remarkably induces Fgf21 expression in eWAT, although fasting-induced hepatic Fgf21 expression is completely reversed by refeeding. The free-running period of locomotor activity rhythm under ALF and the food anticipatory activity (FAA) under RF remained intact in Fgf21 knockout (KO) mice, suggesting that FGF21 is dispensable for both the central clock in the suprachiasmatic nucleus (SCN) and the food-entrainable oscillator that governs the FAA. Temporal expression profiles of circadian genes such as mPer2 and BMAL1 were essentially identical in both tissues between WT and Fgf21 KO mice under RF. The physiological role of the refeeding-induced adipose Fgf21 expression remains to be elucidated.  相似文献   

7.
8.
9.

Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light–dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  相似文献   

10.
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:OO p.m. and then dropped to trough levels at 3:00–4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleepfwake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor- 1 (PAL l), show a marked circadian variation in plasma. In contrast, levels of plasminogen, α2-antiplasmin, urinarytype plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAL 1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAL 1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release. products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAL 1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore, to define the 24-h pattern of plasma tPA and PAI- 1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population. In normal conditions, the 24-h variation of plasma tPA and PAI- 1 is not associated with parallel circadian changes in effective fibrinolysis, assessed as plasma D-dimer concentrations, presumably because fibrin generation in the circulation is low. In diseases in which fibrin formation is increased, however, the physiological drop of fibrinolytic activity in the morning hours may favour thrombus development at this time of day, in agreement with the reported higher morning frequency of acute thrombotic events.  相似文献   

11.
12.
Animals fed daily at the same time exhibit circadian food‐anticipatory activity (FAA), which has been suggested to be driven by one or several food‐entrainable oscillators (FEOs). FAA is altered in mice lacking some circadian genes essential for timekeeping in the main suprachiasmatic clock (SCN). Here, we confirmed that single mutations of clock genes Per1?/? and Per2Brdm1 alter FAA expression in constant darkness (DD) or under a light–dark cycle (LD). Furthermore, we found that Per1?/?;Per2Brdm1 and Per2Brdm1;Cry1?/? double mutant animals did not display a stable and significant FAA either in DD or LD. Interestingly, rescued behavioural rhythms in Per2Brdm1;Cry2?/? mice in DD were totally entrained to feeding time and re‐synchronized after phase‐shifts of mealtime, indicating a higher SCN sensitivity to feeding cues. However, under an LD cycle and restricted feeding at midday, FAA in double Per2Brdm1;Cry2?/? mutant mice was absent. These results indicate that shutting down one or two clock genes results in altered circadian meal anticipation. Moreover, we show that in a genetically rescued SCN clock (Per2Brdm1;Cry2?/?), food is a powerful zeitgeber to entrain behavioural rhythms, leading the SCN to be more sensitive to feeding cues than in wild‐type littermates.  相似文献   

13.
Oishi K  Ohkura N  Amagai N  Ishida N 《FEBS letters》2005,579(17):3555-3559
Diabetes is associated with an excess risk of cardiac events, and one of the risk factors for infarction is the elevated-levels of plasminogen activator inhibitor-1 (PAI-1). To evaluate how the molecular clock mechanism is involved in the diabetes-induced circadian augmentation of PAI-1 gene expression, we examined the expression profiles of PAI-1 mRNA in the hearts of Clock mutant mice with streptozotocin-induced diabetes. Circadian expression of PAI-1 mRNA was blunted to low levels under both normal and diabetic conditions in Clock mutant mice, although the expression rhythm was augmented in diabetic wild-type (WT) mice. Furthermore, plasma PAI-1 levels became significantly higher in WT mice than in Clock mutant mice after STZ administration. Our results suggested that the circadian clock component, CLOCK, is involved in the diabetes-induced circadian augmentation of PAI-1 expression in the mouse heart.  相似文献   

14.
Summary The effects of restricted feeding schedules on the circadian rhythms of wheel-running of Dasyurus viverrinus were examined under a light/dark cycle and in constant darkness (experiment 1) and in constant light (experiment 2). The results of the 2 experiments showed that: (1) in contrast to the light/dark cycle, restricted feeding is only a weak zeitgeber for the wheel-running activity rhythms of D. viverrinus; (2) restricted feeding elicits meal anticipatory activity in D. viverrinus comparable to that elicited by restricted feeding in the rat; (3) transient cycles of the anticipatory activity free-run with a period different to that of the main component of activity for several cycles after the termination of restricted feeding; and (4) activity suggestive of beating between 2 oscillators occurs during restricted feeding and after the termination of restricted feeding. Taken together the latter 3 observations suggest that the activity rhythms of D. viverrinus are controlled by at least 2 separate circadian oscillators.  相似文献   

15.
16.
Humans and animals demonstrate diurnal rhythms in physiology and behavior, which are generated by the circadian pacemaker, located in the supra-chiasmatic nucleus (SCN). The endogenous diurnal rhythm of the SCN is synchronized to the diurnal cycle most effectively by light. However, light also influences the SCN and its output instantaneously, as is demonstrated for the immediate effects of light on SCN neuronal firing frequency and on the output of the SCN to the pineal, inhibiting melatonin secretion. In addition to this, the circadian pacemaker modulates neuronally also other organs such as the adrenal. Therefore, the authors investigated the effect of this light input to the SCN on human heart rate, using light at different phases of the day-night cycle and light of different intensities. Resting heart rate (HR) was measured in volunteers between 20 and 40 years of age during supine, awake, resting conditions, and after 2 hours of fasting. In Experiment 1, HR was measured at different times over the day-night cycle at 0 lux and at indoor light. In Experiment 2, HR was measured at different times over the day-night cycle at controlled light intensities of 0 lux, 100 lux, and 800 lux. The authors demonstrate a clear diurnal rhythm in resting HR in complete darkness, similar to that measured under constant routine conditions. Second, it is demonstrated that light increases resting HR depending on the phase of the day-night cycle and on the intensity of light. These data strongly suggest that the circadian pacemaker modulates human HR.  相似文献   

17.
Recent studies have demonstrated that metabolic changes in mammals induce feedback regulation of the circadian clock. The present study evaluates the effects of a low-carbohydrate high-protein diet (HPD) on circadian behavior and peripheral circadian clocks in mice. Circadian rhythms of locomotor activity and core body temperature remained normal in mice fed with the HPD diet (HPD mice), suggesting that it did not affect the central clock in the hypothalamus. Two weeks of HPD feeding induced mild hypoglycemia without affecting body weight, although these mice consumed more calories than mice fed with a normal diet (ND mice). Plasma insulin levels were increased during the inactive phase in HPD mice, but increased twice, beginning and end of the active phase, in ND mice. Expression levels of the key gluconeogenic regulatory genes PEPCK and G6Pase were significantly induced in the liver and kidneys of HPD mice. The HPD appeared to induce peroxisome proliferator-activated receptor α (PPARα) activation, since mRNA expression levels of PPARα and its typical target genes, such as PDK4 and Cyp4A10, were significantly increased in the liver and kidneys. Circadian mRNA expression of clock genes, such as BMAL1, Cry1, NPAS2, and Rev-erbα, but not Per2, was significantly phase-advanced, and mean expression levels of BMAL1 and Cry1 mRNAs were significantly elevated, in the liver and kidneys of HPD mice. These findings suggest that a HPD not only affects glucose homeostasis, but that it also advances the molecular circadian clock in peripheral tissues. (Author correspondence: )  相似文献   

18.
The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway.  相似文献   

19.
Acute thrombotic events frequently occur in the early morning among hyperlipidemic patients. The activity of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of the fibrinolytic system, oscillates daily, and this is considered one mechanism that underlies the morning onset of acute thrombotic events in hyperlipidemia. Although several studies have reported the expression of the PAI-1 gene is under the control of the circadian clock system, the molecular mechanism of the circadian transactivation of PAI-1 gene under hyperlipidemic conditions remains to be elucidated. Here, the authors investigated whether hyperlipidemia induced by a high-fat diet (HFD) enhances the daily oscillation of plasma PAI-1 activity in mice. The mRNA levels of the PAI-1 gene were increased and rhythmically fluctuated with high-oscillation amplitude in the livers of wild-type mice fed with the HFD. Circadian expression of proxisome proliferator-activated receptor-α (PPARα) mRNA was also augmented as well as that of PAI-1. Chromatin immunoprecipitation showed the HFD-induced hyperlipidemia significantly increased the binding of PPARα to the PAI-1 promoter. Luciferase reporter analysis using primary hepatocytes revealed CLOCK/BMAL1-mediated PAI-1 promoter activity was synergistically enhanced by cotransfection with PPARα/retinoid X receptor-α (RXRα), and this synergistic transactivation was repressed by negative limbs of the circadian clock, PERIOD2 and CRYPTOCHROME1. As expected, HFD-induced PAI-1 mRNA expression was significantly attenuated in PPARα-null mice. These results suggest a molecular link between the circadian clock and lipid metabolism system in the regulation of PAI-1 gene expression, and provide an aid for understanding why hyperlipidemia increases the risk of acute thrombotic events in the morning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号