首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
College students usually exhibit an irregular sleep-wake cycle characterized by great phase delays on weekends and short sleep length on weekdays. As the temporal organization of social activities is an important synchronizer of human biological rhythms, we investigated the role played by study's schedules and work on the sleep-wake cycle. Three groups of female college students were investigated: (1) no-job morning group, (2) no-job evening group, (3) job evening group. The volunteers answered a sleep questionnaire in the classroom. The effects of day of the week and group on the sleep schedules and sleep length were analyzed by a two way ANOVA for repeated measures. The three groups showed delays in the wake up time on weekends. No-job evening and morning groups also delayed bedtime, but the job evening group slept at the same time on weekdays as on weekends. Sleep length increased on weekends for morning group and job evening group, whereas the no-job evening group maintained the amount of sleep from weekdays to weekends. This survey showed that the tendency of phase delay on weekends was differently expressed according to study's schedules and work.  相似文献   

2.
Nonrestorative sleep (NRS), characterized by a lack of refreshment upon awakening, has received little attention in the sleep literature even though it can occur and cause impairment apart from other sleep difficulties associated with insomnia. The Restorative Sleep Questionnaire (RSQ) is one of the first validated self-report instruments for investigating NRS severity, presenting new opportunities to explore what factors predict and perhaps contribute to unrefreshing sleep. The present study sought to determine whether inherent circadian preference for morning or evening activity, known as chronotype, predicted restorative sleep in 164 college undergraduates who completed daily RSQs over 2 weeks. The participants who endorsed greater orientation to evening activity on the morningness–eveningness questionnaire reported significantly less average restorative sleep across their full sampling period, and this association was maintained after accounting for demographic factors, number of sleep-relevant psychiatric and medical diagnoses, sleep diary parameters, self-reported status as an insomniac and ratings of sleep quality. When analyses were conducted separately for weekday and weekend RSQ scores, eveningness predicted NRS independently of extraneous variables only during the workweek, not during Saturday and Sunday. These findings have implications for the developing conceptualization of NRS, and continue the work of elucidating the interconnections between common sleep disturbances and the circadian system.  相似文献   

3.
College students usually exhibit an irregular sleep-wake cycle characterized by great phase delays on weekends and short sleep length on weekdays. As the temporal organization of social activities is an important synchronizer of human biological rhythms, we investigated the role played by study's schedules and work on the sleep-wake cycle. Three groups of female college students were investigated: (1) no-job morning group, (2) no-job evening group, (3) job evening group. The volunteers answered a sleep questionnaire in the classroom. The effects of day of the week and group on the sleep schedules and sleep length were analyzed by a two way ANOVA for repeated measures. The three groups showed delays in the wake up time on weekends. No-job evening and morning groups also delayed bedtime, but the job evening group slept at the same time on weekdays as on weekends. Sleep length increased on weekends for morning group and job evening group, whereas the no-job evening group maintained the amount of sleep from weekdays to weekends. This survey showed that the tendency of phase delay on weekends was differently expressed according to study's schedules and work.  相似文献   

4.
Factors contributing to sleep timing and sleep restriction in daily life include chronotype and less flexibility in times available for sleep on scheduled days versus free days. There is some evidence that these two factors interact, with morning types and evening types reporting similar sleep need, but evening types being more likely to accumulate a sleep debt during the week and to have greater sleep extension on weekend nights. The aim of the present study was to evaluate the independent contributions of circadian phase and weekend-to-weekday variability to sleep timing in daily life. The study included 14 morning types and 14 evening types recruited from a community-based sample of New Zealand adults (mean age 41.1 ± 4.7 years). On days 1–15, the participants followed their usual routines in their own homes and daily sleep start, midpoint and end times were determined by actigraphy and sleep diaries. Days 16–17 involved a 17 h modified constant routine protocol in the laboratory (17:00 to 10:00, <20 lux) with half-hourly saliva samples assayed for melatonin. Mixed model ANCOVAs for repeated measures were used to investigate the independent relationships between sleep start and end times (separate models) and age (30–39 years versus 40–49 years), circadian phase [time of the dim light melatonin onset (DLMO)] and weekday/weekend schedules (Sunday–Thursday nights versus Friday–Saturday nights). As expected on weekdays, evening types had later sleep start times (mean = 23:47 versus 22:37, p < .0001) and end times (mean = 07:14 versus 05:56, p < .0001) than morning types. Similarly on weekend days, evening types had later sleep start times (mean = 00:14 versus 23:07, p = .0032) and end times (mean = 08:56 versus 07:04, p < .0001) than morning types. Evening types also had later DLMO (22:06 versus 20:46, p = .0002) than morning types (mean difference = 80.4 min, SE = 18.6 min). The ANCOVA models found that later sleep start times were associated with later DLMO (p = .0172) and weekend-to-weekday sleep timing variability (p < .0001), after controlling for age, while later sleep end times were associated with later DLMO (p = .0038), younger age (p = .0190) and weekend days (p < .0001). Sleep end times showed stronger association with DLMO (for every 30 min delay in DLMO, estimated mean sleep end time occurred 14.0 min later versus 10.19 min later for sleep start times). Sleep end times also showed greater delays on weekends versus weekdays (estimated mean delay for sleep end time = 84 min, for sleep start time = 28 min). Comparing morning types and evening types, the estimated contributions of the DLMO to the mean observed differences in sleep timing were on weekdays, 39% for sleep start times and 49% for sleep end times; and on weekends, 41% for sleep start times and 34% of sleep end times. We conclude that differences in sleep timing between morning types and evening types were much greater than would be predicted on the basis of the independent contribution of the difference in DLMO on both weekdays and weekend days. The timing of sleep in daily life involves complex interactions between physiological and psychosocial factors, which may be moderated by age in adults aged 30–49 years.  相似文献   

5.
The purpose of this study was to describe and compare the circadian rhythm of body temperature and cortisol, as well as self-reported clock times of sleep onset and offset on weekdays and weekends in 19 healthy adult "larks" (morning chronotypes) and "owls" (evening chronotypes), defined by the Home and Ostberg questionnaire. Day-active subjects entered the General Clinical Research Center, where blood was sampled every 2 h over 38 h for later analysis for cortisol concentration by enzyme immunoassay. Rectal body temperature was measured continuously. Lights were turned off at 22:30 for sleep and turned on at 06:00, when subjects were awakened. The acrophases (peak times) of the cortisol and temperature rhythms occurred 55 minutes (P < or = .05) and 68 minutes (P < .01), respectively, earlier in the morningness group. The amplitude of the cortisol rhythm was lower in the eveningness than in the morningness group (P = n.s.). Subject groups differed on all indices of habitual and preferred timing of sleep and work weekdays and weekends (P = .05-.001).  相似文献   

6.
Eveningness, the preference of being active during the evening in contrast to the morning, has been associated with markedly increased problem behavior in adolescents; however, the underlying mechanisms are still not understood. This study investigates the association of eveningness with behavior and cognition in children aged 7–12 yrs, and explores the potential mediating role of a variety of sleep factors. Parents of 333 school-aged children (mean age?=?9.97 yrs; 55% girls) completed a sleep log and several questionnaires regarding eveningness, sleep habits, and behavioral problems. Intellectual abilities, working memory, and attention were assessed using the short-form of the Wechsler Intelligence Scale for Children (WISC) and subtasks of the Amsterdam Neuropsychological Tasks. Results showed that eveningness predicted behavioral problems over and above the effects of demographic variables (age, sex, and familial socioeconomic status) (p?=?0.003). Significant partial correlation was found for eveningness and sleep duration during weekdays (p?=?0.005), and not during weekends. Furthermore, evening orientation was associated with a reduced rested feeling on weekday mornings (p?<?0.001), but not on weekends. The most important sleep characteristic showing association with many cognitive and behavioral measures was the subjective feeling upon awakening—particularly during weekdays. Bootstrap mediation analyses demonstrated that sleep significantly mediated the effects of eveningness on behavioral problems, working memory, and sustained attention. Interestingly, mediation was only significant through the subjective feeling upon awakening on weekdays. The current findings indicate that the subjective feeling upon awakening is a much better predictor of daytime problems than subjective sleep quantity. Furthermore, the data suggest that negative outcomes in evening types are due to the fact that they wake up before their circadian drive for arousal and prior to complete dissipation of sleep pressure during weekdays. Interventions that target the misalignment of endogenous circadian rhythms and imposed rhythms are discussed. (Author correspondence: kbheijden@fsw.leidenuniv.nl)  相似文献   

7.
School start time influences sleep parameters. Differences between circadian sleep parameters on weekends and weekdays have been associated with obesity, sleep, and psychiatric disorders. Moreover, circadian rhythm dysregulation affects the secretion of some hormones, such as melatonin and cortisol. In the current study, we investigate the effect of school start time on cortisol and melatonin levels in a community sample of Brazilian children and adolescents. This was a cross-sectional study of 454 students (mean age, 12.81 ± 2.56 years; 58.6% female). From this sample, 80 participants were randomly selected for saliva collection to measure melatonin and cortisol levels. Circadian sleep parameters were assessed by self-reported sleep and wake up schedules and the Morningness–Eveningness Questionnaire. The outcomes, salivary melatonin and cortisol levels, were measured in morning, afternoon and night saliva samples, and behavior problems were assessed using the Child Behavior Checklist (CBCL). The main results revealed that morning school start time decreased the secretion of melatonin. Morning melatonin levels were significantly positively correlated with the sleep midpoint on weekdays and on weekends. Afternoon melatonin levels were positively correlated with the sleep midpoint on weekends in the morning school students. Conversely, in the afternoon school students, night melatonin levels were negatively correlated with the sleep midpoint on weekdays. Cortisol secretion did not correlate with circadian sleep parameters in any of the school time groups. In conclusion, school start time influences melatonin secretion, which correlated with circadian sleep parameters. This correlation depends on the presence of psychiatric symptoms. Our findings emphasize the importance of drawing attention to the influence of school start time on the circadian rhythm of children and adolescents.  相似文献   

8.
The purpose of this study was to describe and compare the circadian rhythm of body temperature and cortisol, as well as self-reported clock times of sleep onset and offset on weekdays and weekends in 19 healthy adult “larks” (morning chronotypes) and “owls” (evening chronotypes), defined by the Horne and Östberg questionnaire. Day-active subjects entered the General Clinical Research Center, where blood was sampled every 2h over 38h for later analysis for cortisol concentration by enzyme immunoassay. Rectal body temperature was measured continuously. Lights were turned off at 22:30 for sleep and turned on at 06:00, when subjects were awakened. The acrophases (peak times) of the cortisol and temperature rhythms occurred 55 minutes (P ≤.05) and 68 minutes (P <.01), respectively, earlier in the morningness group. The amplitude of the cortisol rhythm was lower in the eveningness than in the morningness group (P = n.s.). Subject groups differed on all indices of habitual and preferred timing of sleep and work weekdays and weekends (P =. 05–.001). (Chronobiology International, 18(2), 249–261, 2001)  相似文献   

9.
Previous studies found students who both work and attend school undergo a partial sleep deprivation that accumulates across the week. The aim of the present study was to obtain information using a questionnaire on a number of variables (e.g., socio-demographics, lifestyle, work timing, and sleep-wake habits) considered to impact on sleep duration of working (n = 51) and non-working (n = 41) high-school students aged 14-21 yrs old attending evening classes (19:00-22:30 h) at a public school in the city of S?o Paulo, Brazil. Data were collected for working days and days off. Multiple linear regression analyses were performed to assess the factors associated with sleep duration on weekdays and weekends. Work, sex, age, smoking, consumption of alcohol and caffeine, and physical activity were considered control variables. Significant predictors of sleep duration were: work ( p < 0.01), daily work duration (8-10 h/day; p < 0.01), sex ( p = 0.04), age 18-21 yrs (0.01), smoking( p = 0.02) and drinking habits ( p = 0.03), irregular physical exercise (p < 0.01), ease of falling asleep ( p = 0.04), and the sleep-wake cycle variables of napping ( p < 0.01), nocturnal awakenings ( p < 0.01), and mid-sleep regularity ( p < 0.01). The results confirm the hypotheses that young students who work and attend school showed a reduction in night-time sleep duration. Sleep deprivation across the week, particularly in students working 8-10 h/day, is manifested through a sleep rebound (i.e., extended sleep duration) on Saturdays. However, the different roles played by socio-demographic and lifestyle variables have proven to be factors that intervene with nocturnal sleep duration. The variables related to the sleep-wake cycle-naps and night awakenings-proved to be associated with a slight reduction in night-time sleep, while regularity in sleep and wake-up schedules was shown to be associated with more extended sleep duration, with a distinct expression along the week and the weekend. Having to attend school and work, coupled with other sociodemographic and lifestyle factors, creates an unfavorable scenario for satisfactory sleep duration.  相似文献   

10.
Here we aimed to investigate the association between poor quality of sleep, sleep debt during weekdays and the performance on an interval timing task, using the method of production of time and consisting on five sessions a day for nine days. The sleep of our volunteers was particularly restricted on weekdays. Moreover, later chronotype was associated with the need for compensation on weekends. Regarding the production of time, produced durations were consistently over-produced and there was an evident increase in the mean coefficient of variation (CV) from the wake-up morning to afternoon sessions, followed by a sharp decrease in the evening sessions. Importantly, CV was mainly determined by the interaction between MSFdiff, sleep duration on weekdays and age. In conclusion, our results indicate that when university students are under the effects of social jet lag and reduced sleep duration during weekdays, their performance in interval timing tasks may be compromised.  相似文献   

11.
Daily light exposure in morning-type and evening-type individuals   总被引:1,自引:0,他引:1  
Morning-type individuals (M-types) have earlier sleep schedules than do evening types (E-types) and therefore differ in their exposure to the external light-dark cycle. M-types and E-types usually differ in their endogenous circadian phase as well, but whether this is the cause or the consequence of the difference in light exposure remains controversial. In this study, ambulatory monitoring was used to measure 24-h light exposure in M-type and E-type subjects for 7 consecutive days. The circadian phase of each subject was then estimated in the laboratory using the dim-light melatonin onset in saliva (DLMO) and the core body temperature minimum (Tmin). On average, M-types had earlier sleep schedules and earlier circadian phases than E-types. They also showed more minutes of daily bright light exposure (> 1000 lux) than E-types. As expected, the 24-h patterns of light exposure analyzed in relation to clock time indicated that M-types were exposed to more light in the morning than E-types and that the reverse was true in the late evening. However, there was no significant difference when the light profiles were analyzed in relation to circadian phase, suggesting that, on average, the circadian pacemaker of both M-types and E-types was similarly entrained to the light-dark cycle they usually experience. Some M-types and E-types had different sleep schedules but similar circadian phases. These subjects also had identical light profiles in relation to their circadian phase. By contrast, M-types and E-types with very early or very late circadian phases showed large differences in their profiles of light exposure in relation to their circadian phase. This observation suggests that in these individuals, early or late circadian phases are related to relatively short and long circadian periods and that a phase-delaying profile of light exposure in M-types and a phase-advancing profile in E-types are necessary to ensure a stable entrainment to the 24-h day.  相似文献   

12.
The effects of permanent shift work on entrainment and sleepiness are examined using a mathematical model that combines a model of sleep-wake switch in the brain with a model of the human circadian pacemaker entrained by light and nonphotic inputs. The model is applied to 8-hour permanent shift schedules to understand the basic mechanisms underlying changes of entrainment and sleepiness. Average sleepiness is shown to increase during the first days on the night and evening schedules, that is, shift start times between 0000 to 0700 h and 1500 to 2200 h, respectively. After the initial increase, sleepiness decreases and stabilizes via circadian re-entrainment to the cues provided by the shifts. The increase in sleepiness until entrainment is achieved is strongly correlated with the phase difference between a circadian oscillator entrained to the ambient light and one entrained to the shift schedule. The higher this phase difference, the larger the initial increase in sleepiness. When entrainment is achieved, sleepiness stabilizes and is the same for different shift onsets within the night or evening schedules. The simulations reveal the presence of a critical shift onset around 2300 h that separates schedules, leading to phase advance (night shifts) and phase delay (evening shifts) of the circadian pacemaker. Shifts starting around this time take longest to entrain and are expected to be the worst for long-term sleepiness and well-being of the workers. Surprisingly, we have found that the circadian pacemaker entrains faster to night schedules than to evening ones. This is explained by the longer photoperiod on night schedules compared to evening. In practice, this phenomenon is difficult to see due to days off on which workers switch to free sleep-wake activity. With weekends, the model predicts that entrainment is never achieved on evening and night schedules unless the workers follow the same sleep routine during weekends as during work days. Overall, the model supports experimental observations, providing new insights into the mechanisms and allowing the examination of conditions that are not accessible experimentally.  相似文献   

13.
Only a few studies focus on comparisons to reveal differences in sleep and circadian preferences in adolescents. This study used the same instrument to compare adolescents in Eastern and Western Germany. In all, 674 pupils between 11 and 16 yrs participated. The questionnaire asked questions about wake times and bed times (on weekend and weekdays), and the Composite Scale of Morningness (CSM) was completed to assess diurnal preferences. Locality (East/West Germany) had no effect on rise and bed times during the week and on sleep length on the weekend. Western pupils rose later on weekends and went to bed later on weekends. While sleep length on weekdays was shorter in West Germany, weekend oversleep was longer and misalignment was higher. Diurnal preferences (CSM scores) suggested a higher eveningness in West Germany. As interaction effects were insignificant, changes throughout adolescence seem similar in East and West Germany. These data suggest that given similar school start times, Western German pupils are at higher risk because they are later chronotypes. The finding of earlier rise and bed times of the East German pupils is consistent with the hypothesis that sunlight acts as the entrainment for the biological clock of adolescents, as sunrise is earlier in Eastern Germany.  相似文献   

14.
Only a few studies focus on comparisons to reveal differences in sleep and circadian preferences in adolescents. This study used the same instrument to compare adolescents in Eastern and Western Germany. In all, 674 pupils between 11 and 16 yrs participated. The questionnaire asked questions about wake times and bed times (on weekend and weekdays), and the Composite Scale of Morningness (CSM) was completed to assess diurnal preferences. Locality (East/West Germany) had no effect on rise and bed times during the week and on sleep length on the weekend. Western pupils rose later on weekends and went to bed later on weekends. While sleep length on weekdays was shorter in West Germany, weekend oversleep was longer and misalignment was higher. Diurnal preferences (CSM scores) suggested a higher eveningness in West Germany. As interaction effects were insignificant, changes throughout adolescence seem similar in East and West Germany. These data suggest that given similar school start times, Western German pupils are at higher risk because they are later chronotypes. The finding of earlier rise and bed times of the East German pupils is consistent with the hypothesis that sunlight acts as the entrainment for the biological clock of adolescents, as sunrise is earlier in Eastern Germany.  相似文献   

15.
Previous studies found students who both work and attend school undergo a partial sleep deprivation that accumulates across the week. The aim of the present study was to obtain information using a questionnaire on a number of variables (e.g., socio‐demographics, lifestyle, work timing, and sleep‐wake habits) considered to impact on sleep duration of working (n=51) and non‐working (n=41) high‐school students aged 14–21 yrs old attending evening classes (19:00–22:30 h) at a public school in the city of São Paulo, Brazil. Data were collected for working days and days off. Multiple linear regression analyses were performed to assess the factors associated with sleep duration on weekdays and weekends. Work, sex, age, smoking, consumption of alcohol and caffeine, and physical activity were considered control variables. Significant predictors of sleep duration were: work (p < 0.01), daily work duration (8–10 h/day; p < 0.01), sex (p=0.04), age 18–21 yrs (0.01), smoking (p=0.02) and drinking habits (p=0.03), irregular physical exercise (p < 0.01), ease of falling asleep (p=0.04), and the sleep‐wake cycle variables of napping (p < 0.01), nocturnal awakenings (p < 0.01), and mid‐sleep regularity (p < 0.01). The results confirm the hypotheses that young students who work and attend school showed a reduction in night‐time sleep duration. Sleep deprivation across the week, particularly in students working 8–10 h/day, is manifested through a sleep rebound (i.e., extended sleep duration) on Saturdays. However, the different roles played by socio‐demographic and lifestyle variables have proven to be factors that intervene with nocturnal sleep duration. The variables related to the sleep‐wake cycle—naps and night awakenings—proved to be associated with a slight reduction in night‐time sleep, while regularity in sleep and wake‐up schedules was shown to be associated with more extended sleep duration, with a distinct expression along the week and the weekend. Having to attend school and work, coupled with other socio‐demographic and lifestyle factors, creates an unfavorable scenario for satisfactory sleep duration.  相似文献   

16.
The purpose of this study was to determine whether a sleep log parameter could be used to estimate the circadian phase of normal, healthy, young adults who sleep at their normal times, and thus naturally have day-to-day variability in their times of sleep. Thus, we did not impose any restrictions on the sleep schedules of our subjects (n = 26). For 14 d, they completed daily sleep logs that were verified with wrist activity monitors. On day 14, salivary melatonin was sampled every 30 min in dim light from 19:00 to 07:30 h to determine the dim light melatonin onset (DLMO). Daily sleep parameters (onset, midpoint, and wake) were taken from sleep logs and averaged over the last 5, 7, and 14 d before determination of the DLMO. The mean DLMO was 22:48 +/- 01:30 h. Sleep onset and wake time averaged over the last 5 d were 01:44 +/- 01:41 and 08:44 +/- 01:26 h, respectively. The DLMO was significantly correlated with sleep onset, midpoint, and wake time, but was most strongly correlated with the mean midpoint of sleep from the last 5 d (r = 0.89). The DLMO predicted using the mean midpoint of sleep from the last 5 d was within 1 h of the DLMO determined from salivary melatonin for 92% of the subjects; in no case did the difference exceed 1.5 h. The correlation between the DLMO and the score on the morningness-eveningness questionnaire was significant but comparatively weak (r = -0.48). We conclude that the circadian phase of normal, healthy day-active young adults can be accurately predicted using sleep times recorded on sleep logs (and verified by actigraphy), even when the sleep schedules are irregular.  相似文献   

17.
Adolescents in high school suffer from circadian misalignment, undersleeping on weekdays and oversleeping on weekends. Since high schools usually impose early schedules, adolescents suffer from permanent social jetlag (SJL) and thus are a suitable population to study the effects of SJL on both academic and cognitive performance. In this study, 796 adolescents aged 12–16 years reported information about their sleep habits, morningness–eveningness (M–E), cognitive abilities and grade point average (GPA). Time in bed on both weekdays and weekends was not related to cognitive abilities, and only time in bed on weekdays was related to academic achievement. SJL was negatively related to academic achievement, cognitive abilities (except for vocabulary and verbal fluency abilities) and general cognitive ability (g), whereas M–E was slightly positively related to academic achievement and marginally negatively related to inductive reasoning. Results separated by sex/gender indicated that SJL may be more detrimental to girls’ performance, as it was negatively related to a greater number of cognitive abilities and GPA.  相似文献   

18.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4 ± 1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30 h; wake time: 07:30 h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2-4 h), whereas optimal alertness was slightly phase-delayed with body temperature (1 h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints.  相似文献   

19.
We studied the sleep/wake patterns and circadian typology of Japanese preschool children living in the Tokyo metropolitan area (193 boys and 190 girls, 4–6 years of age) from June to July 2012 based on a standardized parental self-reporting questionnaire. Our major findings are as follows: (1) sleep/wake timing was delayed, and the duration of nocturnal sleep (sleep period as well as time in bed) increased from that on scheduled days (weekdays) to that on free days (weekends) for all ages. (2) The duration of daily sleep (24?h), including daytime nap, was longer for 4-year-old children compared with that in 5- to 6-year-old children, but not significantly different between scheduled and free days within each age group. (3) The distribution of chronotypes was 36.3% for morning (M)-type, 48.8% for neither (N)-type and 11.2% for evening (E)-type, and this distribution was independent of sex or age. (4) Sleep/wake timing delays were observed from M-type and N-type to E-type during scheduled and free days. (5) The duration of nocturnal sleep decreased but increased for 24-h sleep time from M-type and N-type to E-type on scheduled days. (6) Sleep durations did not differ among chronotypes on free days. (7) Chronotypes were associated with parents’ diurnal preferences, mealtimes and attendance at kindergartens or childcare centers but not with sex, age, season of birth, exposure to multimedia or exposure to morning sunlight in their bedrooms. When these results were compared with those for older children and adolescents, similar sleep/wake patterns and circadian typology were observed, although to a lesser degree, in children as young as 4–6 years of age. Napping may compensate, in part, for an accumulated weekday sleep deficit. The distribution of chronotypes was associated with differences in sleep/wake timing and duration and was influenced by the parents’ diurnal preferences and lifestyles. Further research on preschool children is required to investigate whether circadian typology affects their behavioral, emotional and cognitive development.  相似文献   

20.

Self-report questionnaires about sleep habits are useful for population-based studies because of their low cost. However, there is no valid and reliable self-report sleep questionnaire for elementary school-aged children. The aim of this study was to examine the availability of a simple self-report sleep questionnaire for 9- to 12-year-old children. Participants were 58 children aged 9–12 years from one elementary school in a rural area of Japan. Participants wore an accelerometer for 10 consecutive days and completed the sleep questionnaire twice. Sleep measures included bedtime, wake time, and assumed and actual sleep duration on weekdays and weekends. The data obtained from the accelerometer and sleep/wake scoring software were used to assess criterion validity. Pearson correlation coefficients and Bland-Altman plots were used to evaluate the relationships between objective and self-reported sleep measures. Test-retest reliability was evaluated using intraclass correlation coefficients. The correlations between the objective and questionnaire measures were moderate to high (r = 0.45 to 0.90) and significant, except girls’ wake time, assumed sleep duration, and actual sleep duration on weekends. The Bland-Altman plots indicated that bedtime and wake time obtained from the questionnaire were underestimated for both weekdays and weekends. Test-retest reliability of the questionnaire was high, with intraclass coefficients ranging from 0.71 to 0.99. Although caution should be exercised when evaluating sleep duration on weekends, this simple self-reported sleep questionnaire is a useful tool for assessing sleep habits in 9- to 12-year-old children, particularly in school-based and large-scale epidemiological studies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号