首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acoel embryos exhibit a unique form of development that some investigators argue is related to that found in polyclad turbellarians and coelomate spiralians, which display typical quartet spiral cleavage. We generated the first cell-lineage fate map for an acoel flatworm, Neochildia fusca, using modern intracellular lineage tracers to assess the degree of similarity between these distinct developmental programs. N. fusca develops via a "duet" cleavage pattern in which second cleavage occurs in a leiotropically oblique plane relative to the animal-vegetal axis. At the four-cell stage, the plane of first cleavage corresponds to the plane of bilateral symmetry. All remaining cleavages are symmetrical across the sagittal plane. No ectomesoderm is formed; the first three micromere duets generate only ectodermal derivatives. Endomesoderm, including the complex assemblage of circular, longitudinal, and oblique muscle fibers, as well as the peripheral and central parenchyma, is generated by both third duet macromeres. The cleavage pattern, fate map, and origins of mesoderm in N. fusca share little similarity to that exhibited by other spiralians, including the Platyhelminthes (e.g., polyclad turbellarians). These findings are considered in light of the possible evolutionary origins of the acoel duet cleavage program versus the more typical quartet spiral cleavage program. Finally, an understanding of the cell-lineage fate map allows us to interpret the results of earlier cell deletion studies examining the specification of cell fates within these embryos and reveals the existence of cell-cell inductive interactions in these embryos.  相似文献   

2.
    
Early development in clitellate annelids is characterized by a highly stereotyped sequence of unequal, spiral cleavages. Cell 2d (i.e., the second micromere of the D quadrant) in the oligochaete Tubifex tubifex also undergoes an evolutionarily conserved sequence of cell division to produce four bilateral pairs of ectodermal teloblasts that act as embryonic stem cells. This study was conducted to characterize each of the 15 rounds of cell division that occur in the 2d cell lineage in this clitellate. After its occurrence, cell 2d undergoes three rounds of highly unequal divisions, giving off the first smaller daughter cell toward the posterior right of the larger daughter cell, the second cell toward the posterior left, and the third cell toward the anterior side of the cell; the larger daughter cell that results from the third division (i.e., the great-granddaughter cell of 2d) then divides equally into a bilateral pair of NOPQ proteloblasts. Cell NOPQ on either side of the embryo undergoes 11 rounds of cell division, during which ectoteloblasts N, Q, and O/P are produced in this order. After its appearance, NOPQ undergoes highly unequal divisions twice cutting off the smaller cells toward the anterior end of the embryo and then divides almost equally into ectoteloblast N and proteloblast OPQ. After its appearance, OPQ undergoes highly unequal divisions twice giving off the first smaller cell toward the anterior and the second smaller cell toward the posterior of the embryo and then divides almost equally into ectoteloblast Q and proteloblast OP. Finally, OP undergoes highly unequal division four times after its birth budding off the smaller cells toward the anterior and then cleaves equally into ectoteloblasts O and P. In the unequally dividing cells of the 2d cell lineage, the mitotic apparatus (MA), which forms at the cell's center, moves eccentrically toward the cortical site where the smaller cell will be given off. The moving MA is oriented perpendicular to the surface it approaches, and its peripheral pole becomes closely associated with the cell cortex. In contrast, the MA involved in the equal divisions remains in the cell center throughout mitosis. The key features of the cleavage program in the 2d cell lineage are discussed in light of the present observations. The mechanical aspects of unequal cleavage in the 2d cell lineage and the modes of specification of MA orientation are discussed. A comparison of the cleavage mode in the 2d cell lineage is also performed among six selected clitellate annelid species.  相似文献   

3.
Cell-deletion experiments were carried out on the embryo of the polyclad turbellarian Hoploplana inquilina to examine further the nature of development in primitive spiralians. The polyclads are of particular interest because they provide a link between the regulative development of acoels and the determinative development of annelids and molluscs. Single blastomeres were deleted at the two- and four-cell stages by puncture through the eggshell membrane with tungsten needles. All deletions resulted in abnormal larvae with consistent characteristics representing half or three-quarter Müller's larvae. The number of larval eyes was a particularly useful character in revealing mosaicism. This study establishes the polyclad embryo as determinative, but with important cell interactions also occurring during early development, and provides evidence that mosaicism became associated with spiral cleavage in the quartet form during the evolution of the Turbellaria.  相似文献   

4.
Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.  相似文献   

5.
Cell lineage studies in the clade Eutrochozoa, and especially the Spiralia, remains a rich and relatively untapped source for understanding broad evolutionary developmental problems; including (1) the utility of cell timing formation for phylogenetic hypotheses; (2) the evolution of cell timing changes and its relation to heterochronic patterns; (3) stereotypy or lack thereof in rates of change of cell growth during evolution and its relation to both evolutionary history and current usage; and (4) how mosaic cleavage timing variation may be expected to differ from other groups. A compilation of available cell timing information was made from previous studies where each division was explicitly followed and the total number of cells followed was greater than 24. From that compilation, we performed a series of heuristic and quantitative analyses, including a phylogenetic analysis using cell timing data as characters and analyses of timing variation across all taxa. Our results show that: (1) cell lineage data reconstructs a phylogenetic hypothesis that has similarities, especially among the Mollusca. to the patterns found in morphological and molecular analyses; (2) the mesentoblast (4d) is a unique cell compared to other cell in that it speeds up and slows down relative to other cells in taxa with both unequal and equal cell sizes; (3) some cells that form in the same quartet at the same point in the cell lineage hierarchy have much lower variations than analogous other cells, arguing for architectural constraint or stabilizing selection acting on those cells; and (4) although variation in cell timing generally increases during development, timing of formation of progeny cells in the first quartet has lower variation than the parent cells, arguing that some regulation-like behavior might be present.  相似文献   

6.
Nielsen, C. 2010. Some aspects of spiralian development. —Acta Zoologica (Stockholm) 91 : 20–28 Spiralian development is not only a characteristic early cleavage pattern, with shifting orientations of the cleavage planes, but also highly conserved cell lineages, where the origin of several organs can be traced back to identifiable cells in the lineage. These patterns are well documented in annelids, molluscs, nemertines, and platyhelminths and are considered ancestral of a bilaterian clade including these phyla. Spiral cleavage has not been documented in ecdysozoans, and no trace of the spiral development pattern is seen in phoronids and brachiopods. Origin of the spatial organization in spiralian embryos is puzzling, but much of the information appears to be encoded in the developing oocyte. Fertilization and “pseudofertilization” apparently provides the information defining the secondary, anterior‐posterior body axis in many species. The central nervous system consists of three components: an apical organ, derived from the apical blastomeres 1a111‐1d111, which degenerates before or at metamorphosis; the cerebral ganglia derived from other blastomeres of the first micromere quartet and retained in the adult as a preoral part of the brain; and the originally circumblastoporal nerve cord, which has become differentiated into a perioral part of the brain, the paired or secondarily fused ventral nerve cords, and a small perianal nerve ring.  相似文献   

7.
8.
    
Abstract. The reproduction and development of symbiotic polynoid polychaetes in the genus Arctonoe were examined with light and electron microscopy. Around San Juan Island, Washington, the 3 described Arctonoe spp. have very similar reproductive periods and ontogenies. Free-spawned eggs 80 μm in diameter fuse with sperm and develop into planktonic, feeding larvae that bear a prototroch, but no metatroch or food groove cilia. Larvae begin feeding only after the development of episphere ciliary bands and an oral brush, consistent with the hypothesis that these structures are involved in particle capture and handling. Metamorphosis occurs in the laboratory in the absence of hosts after 6–12 weeks of feeding and growth. Juveniles begin feeding using the pharyngeal jaws several days after metamorphosis is complete. In the laboratory, worms reach sexual maturity 4–6 months after metamorphosis. The long planktonic larval period of Arctonoe spp. probably leads to high dispersal, suggesting that geographic differentiation in host preferences is unlikely except over large spatial scales. Naive juveniles of Arctonoe spp. can now be obtained from laboratory cultures to test the hypothesis that genetically based host preferences are important in determining host-use patterns in these symbionts.  相似文献   

9.
In the Maltese Islands two phosphorite layers occur in the Globigerina Limestone Formation (?Aquitanian to Langhian). These layers, labeled C1 and C2, display a multi-stage development with a two-stage hardground development on top (labelled lower and upper hardground). In the lower hardground, lithification and mineralization followed a sedimentary framework betweenThalassinoides burrows, resembling the Cretaceous ‘nodular chalks’ which were marginally phosphatized when they became exposed to the sea floor. In Phosphorite Layer C2, development of this lower hardground has been superimposed by small-scale cycles. It is underlain by one or more omission surfaces each followed by phosphate-rich, bioturbated biomicrites.  相似文献   

10.
    
Recent researches have showed that probiotics promote bone health in humans and rodents. The objective of this study was to determine if probiotics have the similar effects in laying hens. Ninety-six 60-week-old White Leghorn hens were assigned to four-hen cages based on their BW. The cages were randomly assigned to 1 of 4 treatments: a layer diet mixed with a commercial probiotic product (containing Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis and Lactobacillus reuteri) at 0, 0.5, 1.0 or 2.0 g/kg feed (Control, 0.5×, 1.0× and 2.0×) for 7 weeks. Cecal Bifidobacterium spp. counts were higher in all probiotic groups (P<0.001) compared with the control group. The percentage of unmarketable eggs (cracked and shell-less eggs) was decreased in both 0.5× and 2.0× groups compared with the control group (P=0.02), mainly due to the reduction of shell-less eggs (P=0.05). The increases in tibial and femoral mineral density and femoral mineral content (P=0.04, 0.03 and 0.02, respectively), with a concomitant trend of increases in humerus mineral density and tibial mineral content (P=0.07 and 0.08, respectively), occurred in the 2.0× group. However, the bone remodeling indicators of circulating osteocalcin and c-terminal telopeptide of type I collagen were similar among all groups (P>0.05). In addition, the plasma concentrations of cytokines (interleukin-1β, interleukin-6, interleukin-10, interferon-γ and tumor necrosis factor-α) and corticosterone as well as the levels of heterophil to lymphocyte ratio were similar between the 2.0× group and the control group (P>0.05). In line with these findings, no differences of cecal tonsil mRNA expressions of interleukin-1β, interleukin-6 and lipopolysaccharide-induced tumor necrosis factor-α factor were detected between these two groups (P>0.05). These results suggest that immune cytokines and corticosterone may not involve in the probiotic-induced improvement of eggshell quality and bone mineralization in laying hens. In conclusion, the dietary probiotic supplementation altered cecal microbiota composition, resulting in reduced shell-less egg production and improved bone mineralization in laying hens; and the dietary dose of the probiotic up to 2.0× did not cause negative stress reactions in laying hens.  相似文献   

11.
    
ABSTRACT

Patellogastropoda is an ecologically widely diversified group living on various substrata. Juveniles of Lottia tenuisculpta live on rocks and also on the shell of trochid snails, from which host they are thought to derive some benefit. Generally, selective settlement on suitable habitats is one of the most important factors for increasing its growth and survival rates. However, the cue(s) for settlement to specific substrata have been less studied. To prepare for future investigations of settlement, we conducted experiments using described protocols to find the most efficient methods of artificial fertilisation and laboratory culture for L. tenuisculpta. We conducted all described methods of inducing spawning: thermal shocking; hydrogen peroxide treatment; desiccation; ultraviolet irradiation of seawater; bubbling of air; gamete stripping and alkaline maturing. Dissection of male gonads was the most efficient method of collecting sperm and dropping sperm onto mature females was the best method to stimulate egg release. The early development of L. tenuisculpta is mostly identical to other species of Lottia. The larvae settled at the bottom of containers about 96 hours after fertilisation. Adult shells began to grow at 7–8 days and reached 1 mm in length about 50 days after fertilisation.  相似文献   

12.
Several parameters connected with the biology of H. rosa were investigated under laboratory conditions: average life span (20 days) divided into three characteristic stages, mean number of eggs laid (30 eggs) and average time of egg development (31.5 hours). Ontogenesis was studied (until the stage of early organogenesis) and a spiral type of cleavage and epibolic gastrulation were observed. The paper also presents data on the origin of the digestive system and sex cells.  相似文献   

13.
    
Abstract. Both larval and adult fan worms capture particles with opposed bands of cilia. While the larvae use one of the opposed bands (the prototroch) for both feeding and swimming, the sessile adults rely partly on ambient currents to bring food particles to the ciliary bands. The scaling of length of prototrochal cilia with larval body size contrasts with scaling of the opposed latero-frontal cilia with adult body size. In the larva of the serpulid Hydroides elegans , the length of prototrochal cilia increased from 28 to 42 μm in early to late-stage larvae. In contrast, latero-frontal cilia did not increase in length (23 μm) during postlarval development of H. elegans. Among adults of 5 fan-worm species, lengths of latero-frontal cilia ranged from 22 to 35 μm and were weakly correlated with body size. The total area of ciliary filter nevertheless increased with increasing body dry weight of worms with an allometric exponent similar to exponents reported for gill and lophophore areas vs. body weight within species of suspension-feeding bivalves, brachiopods, and gastropods. The similar scaling was remarkable given the striking differences in distribution and function of the ciliary filters. In adult fan worms, increases in filter area depended largely on increases in number and length of radioles; differences in branching of radioles had little effect. Radioles were commonly in 2 or more rows in series, implying refiltration in still water by downstream radioles. Since the allometry of worms' filter area with body size depends on filters in series, it depends on ambient currents that overwhelm ciliary currents.  相似文献   

14.
    
All stages of the embryonic and larval development of Phascolosoma agassizii from Peter the Great Bay (Sea of Japan) were studied and illustrated using light and electron microscopy. The eggs of P. agassizii have the form of an ellipsoid (long and short axes about 100 and 70?µm, respectively). Egg cleavage is typical, spiral, and unequal. Gastrulation occurs by epiboly. This species possesses two pelagic larval stages, a lecithotrophic trochophore and a planktotrophic pelagosphera. The transformation of trochophore into pelagosphera occurs 80–90?h after fertilization. After 120–180?h, the larva has developed all systems of organs characteristic of the pelagosphera and is capable of feeding. At day 10, pelagospheras can settle, for some time, on the aquarium bottom and move on a ciliated lip, collecting food with the aid of a buccal organ. In addition, the larvae periodically attach themselves to the aquarium bottom or to the surface film of the water by means of a terminal organ. The trunk of the larva elongates by enlargement of the region behind the dorsal anal opening, which is located almost in the middle of the trunk region in the 15-day old larva. In the laboratory, 1-month old larvae spend the greater part of time in the attached state. Being attached by a glandular terminal organ to the aquarium bottom, they characteristically bend the body, actively feeding on microalgae from the substratum surface. The differences in the development of P. agassizii in the isolated West-Pacific and East-Pacific populations are shown and discussed.  相似文献   

15.
    
The larval development of Myzostoma cirriferum is described by means of SEM, TEM, and cLSM. It is similar to that of other myzostomids and includes three stages: the protrochophore, the trochophore, and the metatrochophore. The protrochophore is a ball-shaped larva present in culture from 18-48 h after egg laying. It has no internal organs and its body is made of three cell types: covering cells and ciliated cells that are external and surrounded by a cuticle, and resting cells that fill the blastocoel. The trochophore is a pear-shaped larva that develops 20-72 h after egg laying; the body includes the same three cell types as the previous stage. The metatrochophore is a pear-shaped larva that develops between 40 h and 14 days and is characterized by the presence of two bundles of four chaetae. When fully developed, the metatrochophore has a digestive system (made of a pharynx, an esophagus, and a blind digestive pouch), two pairs of protonephridia, and a nervous system composed of a supraesophageal ganglion, circumesophageal connectives, and dorsal and ventral nerves. Metamorphosis generally occurs 7 days after egg laying. At that time, the metatrochophore loses its chaetae and becomes pleated ventrally. This ultrastructural analysis suggests that chaetae and the five ventral longitudinal nerve cords of M. cirriferum metatrochophores are homologous structures to those observed in some polychaete trochophores. Coupled with recent phylogenetic analyses, where the Myzostomida are placed outside the Annelida, homologies between myzostomid and polychaete larvae support the view that a trochophore appeared early during the spiralian evolution.  相似文献   

16.
    
Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell microstructures in such context. We analyse new images of shells from fossils and recent species providing a comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes underpinning the shell diversity in these important indicators of ocean health.  相似文献   

17.
    
Abstract. The polychaete Boccardia proboscidea has poecilogonous development that includes the production of both planktotrophic and adelphophagic young. In this study, we use scanning electron microscopy to analyse external morphogenesis of planktotrophic offspring with emphasis on early embryos, morphogenesis during metamorphosis, and the dynamic nature of larval structures during early ontogeny. Larval growth involves addition of terminal chaetigers and formation of segment-specific structures such as cilia and chaetae. Our observations reveal that most ciliary bands are reduced or incomplete relative to those found in larvae of other polychaete families. We describe a small metatroch (consisting of only a few trochoblasts) in early embryos, which has not previously been reported in the Spionidae. The presence of the metatroch does not imply a function in opposed-band feeding, as a food groove intermediate between the prototroch and metatroch is lacking. A neurotroch, inconsistently reported in the Spionidae, is also present and terminates in a ciliated pit. Many larval structures (e.g., presumptive sensory organs) are short-lived, implying a shift towards early functionality of adult traits in larvae. Metamorphosis is gradual and occurs over the latter half of the larval life. The reduction of larval structures, and early development of adult traits, suggests an overall shift in morphology facilitating settlement and juvenile development.  相似文献   

18.
东海表层沉积中的翼足类及其地质意义   总被引:1,自引:0,他引:1  
对东海84个表层沉积中翼足类进行了定量分析,共获得7属15种,其中Limacinainflata在陆架外缘和上陆坡为优势种,Limacinatrochi formis,Creseisacicula和Creseis virgule在中外陆架最为丰富。根据翼足类的深度分布确定东海现代文石补偿深度在约600m水深处。以冲绳海槽北部柱状样B3GC为例,说明翼足类是研究地质时期古海洋学变化的重要证据。  相似文献   

19.
    
Abstract. This study describes and compares laboratory spawning, larval development, and metamorphosis in the patellogastropod limpets Lottia digitalis and Lottia asmi. Both species were dioecious and freely spawned their gametes, which were fertilized externally. Eggs from L. digitalis and L. asmi averaged 155 and 134 μm in diameter, respectively. Early cleavage patterns were typical of other patellogastropods. Swimming trochophore larvae had developed ∼ 15 hours after fertilization, and ultimately developed into lecithotrophic veliger larvae that reached metamorphic competence at 5.25–5.5 days after fertilization (13°C). Food particles were frequently visible in the gut of newly metamorphosed individuals one day after settlement, and adult shell growth was typically initiated within 2–4 days of settlement. Small egg size in L. asmi , relative to other eastern Pacific lottiids, may be directly related to the need for high fecundity in this small-bodied species; however, developmental information is available for relatively few lottiid species. Because broadcasting lottiids do not secure egg masses in safe microhabitats for development, this reproductive mode may have been conducive to their ecological radiation into novel habitats.  相似文献   

20.
    
Developmental programmes for many marine invertebrates include the assembly of muscular systems appropriate to the functions of swimming and feeding in pelagic larvae. Upon metamorphosis, that musculature is often radically re-organized to meet very different demands of post-larval life. To investigate the development and fate of musculature in the nudibranch Phestilla sibogae, embryos, larvae and metamorphosing stages were fixed, labelled with phalloidin and examined with confocal microscopy. The resultant images revealed the sequential development of both large retractor muscles and numerous finer muscles that allow the larva to manipulate the velum, foot and operculum. Observations of living specimens at the same stages as those fixed for microscopy revealed the actions of the muscles as they developed. During metamorphosis, muscles with shell attachments disintegrate as the larva transforms into a shell-less juvenile. Notably, the massive velar, pedal and opercular retractor muscles disappear during metamorphosis in a sequence that corresponds to their loss of function. Other muscles, however, that appear to be important to the embryo and free-swimming larva persist into juvenile life. The comprehensive and detailed observations of the musculature presented here provide a solid foundation for comparisons with other species with different phylogenies and life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号