首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thought-provoking experimental evidence suggests that perinatal light exposure may imprint circadian clocks with lasting effects on the alignment and the stability of circadian rhythms later in life. Assuming that exposure to light early in life could determine the stability of an individual's circadian system later in life, the present hypothesis proposes that time of year and location of birth (i.e., season and latitude) and thus differential Zeitgeber strengths may be key contributors to a person's susceptibility of developing mood disorders like seasonal affective disorder (SAD) and common internal cancers such as those of breast and prostate. Consequently, when and where people are born might critically predispose them to both mood disorders and internal cancers, and may affect the onset and course of such illnesses. This paper develops a causal framework and presents suggestions for rigorous tests of the associated corollary and predictions. It does not escape our attention that links between the perinatal Zeitgeber strength of light and its effects on the stability of circadian systems later in life could have a role to play in affecting long-term health beyond cancer and mood disorders - mostly in adults but also in children.  相似文献   

2.
ABSTRACT

Experimental evidence suggests that perinatal light imprinting of circadian clocks and systems may affect downstream physiology and cancer risk in later life. For humans, the predominant circadian stimulus is the daily light-dark cycle. Herein, we explore associations between perinatal photoperiod characteristics (photoperiod: duration of daylight as determined by time-of-year and location) and childhood cancer risk. We use pooled data on 182,856 mothers and babies from prospective birth cohorts in six countries (Australia, Denmark, Israel, Norway, UK, USA) within the International Childhood Cancer Cohort Consortium (I4C). Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). In line with predicted differential dose–responses, restricted cubic splines indicate a potential non-linear, non-monotonic relationship between perinatal mean daily photoperiod (0–24 h) and childhood cancer risk. In a restricted analysis of 154,121 individuals who experienced third trimester photoperiods exclusively within the 8–16-h range, the relative risk of developing childhood cancer decreased by 9% with every hour increase in third trimester mean daily photoperiod [HR: 0.91 (95%CIs: 0.84–0.99)]. In conclusion, in this first study of perinatal photoperiod and childhood cancer, we detected an inverse [“protective”] linear association between third trimester mean daily photoperiod and childhood cancer risk in the 8–16-h set of the total study population. Limited statistical power impeded the investigation of risks with individuals exposed to more extreme photoperiods. Future studies are needed to confirm differential photoperiod-associated risks and further investigations into the hypothesized circadian imprinting mechanism are warranted.  相似文献   

3.
Light is necessary for life, and artificial light improves visual performance and safety, but there is an increasing concern of the potential health and environmental impacts of light. Findings from a number of studies suggest that mistimed light exposure disrupts the circadian rhythm in humans, potentially causing further health impacts. However, a variety of methods has been applied in individual experimental studies of light-induced circadian impacts, including definition of light exposure and outcomes. Thus, a systematic review is needed to synthesize the results. In addition, a review of the scientific evidence on the impacts of light on circadian rhythm is needed for developing an evaluation method of light pollution, i.e., the negative impacts of artificial light, in life cycle assessment (LCA). The current LCA practice does not have a method to evaluate the light pollution, neither in terms of human health nor the ecological impacts. The systematic literature survey was conducted by searching for two concepts: light and circadian rhythm. The circadian rhythm was searched with additional terms of melatonin and rapid-eye-movement (REM) sleep. The literature search resulted to 128 articles which were subjected to a data collection and analysis. Melatonin secretion was studied in 122 articles and REM sleep in 13 articles. The reports on melatonin secretion were divided into studies with specific light exposure (101 reports), usually in a controlled laboratory environment, and studies of prevailing light conditions typical at home or work environments (21 studies). Studies were generally conducted on adults in their twenties or thirties, but only very few studies experimented on children and elderly adults. Surprisingly many studies were conducted with a small sample size: 39 out of 128 studies were conducted with 10 or less subjects. The quality criteria of studies for more profound synthesis were a minimum sample size of 20 subjects and providing details of the light exposure (spectrum or wavelength; illuminance, irradiance or photon density). This resulted to 13 qualified studies on melatonin and 2 studies on REM sleep. Further analysis of these 15 reports indicated that a two-hour exposure to blue light (460 nm) in the evening suppresses melatonin, the maximum melatonin-suppressing effect being achieved at the shortest wavelengths (424 nm, violet). The melatonin concentration recovered rather rapidly, within 15 min from cessation of the exposure, suggesting a short-term or simultaneous impact of light exposure on the melatonin secretion. Melatonin secretion and suppression were reduced with age, but the light-induced circadian phase advance was not impaired with age. Light exposure in the evening, at night and in the morning affected the circadian phase of melatonin levels. In addition, even the longest wavelengths (631 nm, red) and intermittent light exposures induced circadian resetting responses, and exposure to low light levels (5–10 lux) at night when sleeping with eyes closed induced a circadian response. The review enables further development of an evaluation method of light pollution in LCA regarding the light-induced impacts on human circadian system.  相似文献   

4.
Spontaneously hypertensive rats (SHR) develop cardiovascular and metabolic pathology in adulthood when their circadian system exhibits significant aberrances compared with healthy control rats. This study was aimed to elucidate how the SHR circadian system develops during ontogenesis and to assess its sensitivity to changes in maternal-feeding regime. Analysis of ontogenesis of clock gene expression rhythms in the suprachiasmatic nuclei, liver and colon revealed significant differences in SHR compared with Wistar rats. In the suprachiasmatic nuclei of the hypothalamus (SCN) and liver, the development of a high-amplitude expression rhythm selectively for Bmal1 was delayed compared with Wistar rat. The atypical development of the SHR circadian clocks during postnatal ontogenesis might arise from differences in maternal behavior between SHR and Wistar rats that were detected soon after delivery. It may also arise from higher sensitivity of the circadian clocks in the SHR SCN, liver and colon to maternal behavior related to changes in the feeding regime because in contrast to Wistar rat, the SHR SCN and peripheral clocks during the prenatal period and the hepatic clock during the early postnatal period were phase shifted due to exposure of mothers to a restricted feeding regime. The maternal restricted feeding regime shifted the clocks despite the fact that the mothers were maintained under the light/dark cycle. Our findings of the diverse development and higher sensitivity of the developing circadian system of SHR to maternal cues might result from previously demonstrated differences in the SHR circadian genotype and may potentially contribute to cardiovascular and metabolic diseases, which the animal model spontaneously develops.  相似文献   

5.
The Drosophila circadian network is a seasonal timer   总被引:4,自引:0,他引:4  
Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.  相似文献   

6.
Microbial community circadian rhythms have a broad influence on host health and even though light-induced environmental fluctuations could regulate microbial communities, the contribution of light to the circadian rhythms of rhizosphere microbial communities has received little attention. To address this gap, we monitored diel changes in the microbial communities in rice (Oryza sativa L.) rhizosphere soil under light–dark and constant dark regimes, identifying microbes with circadian rhythms caused by light exposure and microbial circadian clocks, respectively. While rhizosphere microbial communities displayed circadian rhythms under light–dark and constant dark regimes, taxa possessing circadian rhythms under the two conditions were dissimilar. Light exposure concealed microbial circadian clocks as a regulatory driver, leading to fewer ecological niches in light versus dark communities. These findings disentangle regulation mechanisms for circadian rhythms in the rice rhizosphere microbial communities and highlight the role of light-induced regulation of rhizosphere microbial communities.Subject terms: Microbial ecology, Community ecology  相似文献   

7.
Lighting conditions influence biological clocks. The present experiment was designed to test the presence of a critical window of days during the lactation stage of the rat in which light has a decisive role on the development of the circadian system. Rats were exposed to 4, 8, or 12 days of constant light (LL) during the first days of life. Their circadian rhythm was later studied under LL and constant darkness. The response to a light pulse was also examined. Results show that the greater the number of LL days during lactation, the stronger the rhythm under LL and the smaller the phase shift due to the light pulse. These responses are enhanced when rats are exposed to LL days around postnatal day 12. A mathematical model was built to explain the responses of the circadian system with respect to the timing of LL during lactation, and we deduced that between postnatal days 10 to 20 there is a critical period of sensitivity to light; consequently, exposure to LL during this time modifies the circadian organization of the motor activity.  相似文献   

8.
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.  相似文献   

9.
Disruptions of circadian rhythms have been linked to a wide range of pathologies from sleep disorders to cancer. The extent to which disruptions of circadian rhythms during development contribute to later conditions is not known. The present study tested the hypothesis that functional properties of the central circadian pacemaker, the suprachiasmatic nucleus (SCN), are affected by abnormal entrainment during development. The SCN is specialized for the generation of robust rhythms, for direct and indirect output to physiological and behavioral systems, and for entrainment to light/dark cycles via direct retinal input. It consists of thousands of neurons and glia with distinct phenotypes and has subdivisions delineated by both anatomical and functional criteria. In rodents, SCN rhythms develop within days after SCN cells are produced and before many other aspects of differentiation, such as synaptogenesis, are complete. We demonstrated that around the time of birth, the hamster SCN in vivo can undergo repeated phase shifts by a dopamine D(1) receptor agonist (SKF-38393). For 2 days before and 2 days after birth, one group of hamsters received regular exposure to the drug at the same time of day, while another group was exposed at varying times to induce repeated phase shifts. Free-running and entrained activity rhythms were compared between the groups at different ages after weaning. Repeated phase shifts during SCN development had a significant effect on free-running period measured immediately after weaning. This effect was eliminated by subsequent entrainment to a light/dark cycle, indicating that the effect was not permanent. These and other results suggest that SCN development required for functional properties such as free-running period is resilient to perturbation.  相似文献   

10.
Regulation of output from the plant circadian clock   总被引:1,自引:0,他引:1  
Plants, like many other organisms, have endogenous biological clocks that enable them to organize their physiological, metabolic and developmental processes so that they occur at optimal times. The best studied of these biological clocks are the circadian systems that regulate daily (approximately 24 h) rhythms. At the core of the circadian system in every organism are oscillators responsible for generating circadian rhythms. These oscillators can be entrained (set) by cues from the environment, such as daily changes in light and temperature. Completing the circadian clock model are the output pathways that provide a link between the oscillator and the various biological processes whose rhythms it controls. Over the past few years there has been a tremendous increase in our understanding of the mechanisms of the oscillator and entrainment pathways in plants and many useful reviews on the subject. In this review we focus on the output pathways by which the oscillator regulates rhythmic plant processes. In the first part of the review we describe the role of the circadian system in regulation at all stages of a plant's development, from germination and growth to reproductive development as well as in multiple cellular processes. Indeed, the importance of a circadian clock for plants can be gauged by the fact that so many facets of plant development are under its control. In the second part of the review we describe what is known about the mechanisms by which the circadian system regulates these output processes.  相似文献   

11.
BACKGROUND: Circadian clocks regulate the gene expression, metabolism and behaviour of most eukaryotes, controlling an orderly succession of physiological processes that are synchronised with the environmental day/night cycle. Central circadian pacemakers that control animal behaviour are located in the brains of insects and rodents, but the location of such a pacemaker has not been determined in plants. Peripheral plant and animal tissues also maintain circadian rhythms when isolated in culture, indicating that these tissues contain circadian clocks. The degree of autonomy that the multiple, peripheral circadian clocks have in the intact organism is unclear. RESULTS: We used the bioluminescent luciferase reporter gene to monitor rhythmic expression from three promoters in transgenic Arabidopsis and tobacco plants. The rhythmic expression of a single gene could be set at up to three phases in different anatomical locations of a single plant, by applying light/dark treatments to restricted tissue areas. The initial phases were stably maintained after the entraining treatments ended, indicating that the circadian oscillators in intact plants are autonomous. This result held for all the vegetative plant organs and for promoters expressed in all major cell types. The rhythms of one organ were unaffected by entrainment of the rest of the plant, indicating that phase-resetting signals are also autonomous. CONCLUSIONS: Higher plants contain a spatial array of autonomous circadian clocks that regulate gene expression without a localised pacemaker. Circadian timing in plants might be less accurate but more flexible than the vertebrate circadian system.  相似文献   

12.
Circadian clocks play a fundamental role in biology and disease. Much has been learned about the molecular underpinnings of these biological clocks from genetic studies in model organisms, such as the fruit fly, Drosophila melanogaster. Here we review the literature from our lab and others that establish a role for the protein kinase CK2 in Drosophila clock timing. Among the clock genes described thus far, CK2 is unique in its involvement in plant, fungal, as well as animal circadian clocks. We propose that this reflects an ancient, conserved function for CK2 in circadian clocks. CK2 and other clock genes have been implicated in cellular responses to DNA damage, particularly those induced by ultraviolet (UV) light. The finding of a dual function of CK2 in clocks and in UV responses supports the notion that clocks evolved to assist organisms in avoiding the mutagenic effects of daily sunlight.  相似文献   

13.
Acute light pulses as well as long-term light exposure may not only modulate photoreceptive properties, but also induce reversible or irreversible damage to the retina, depending on exposure conditions. Illuminance levels in laboratory animal colonies and manipulations of lighting regimens in circadian rhythm research can threaten retinal structure and physiology, and may therefore modify zeitgeber input to the central circadian system. Given the opportunity to escape light at any time, the nocturnal rat self-selects a seasonally varying "naturalistic skeleton photoperiod" that protects the eyes from potential damage by nonphysiological light exposures. Both rod rod-segment disk shedding and behavioral circadian phase shifts are elicited by low levels of twilight stimulation. From this vantage point, we hypothesize that certain basic properties of circadian rhythms (e.g., Aschoff's rule and splitting) may reflect modulation of retinal physiology by light. Pharmacological manipulations with or without the addition of lighting strategies have been used to analyze the neurochemistry of circadian timekeeping. Drug modulation of light input at the level of the retina may add to or interact with direct drug modulation of the central circadian pacemaking system.  相似文献   

14.
Singularity behaviour in circadian clocks--the loss of robust circadian rhythms following exposure to a stimulus such as a pulse of bright light--is one of the fundamental but mysterious properties of clocks. To quantitatively perturb and accurately measure the dynamics of cellular clocks, we synthetically produced photo-responsiveness within mammalian cells by exogenously introducing the photoreceptor melanopsin and continuously monitoring the effect of photo-perturbation on the state of cellular clocks. Here we report that a critical light pulse drives cellular clocks into singularity behaviour. Our theoretical analysis consistently predicts and subsequent single-cell level observation directly proves that desynchronization of individual cellular clocks underlies singularity behaviour. Our theoretical framework also explains why singularity behaviours have been experimentally observed in various organisms, and it suggests that desynchronization is a plausible mechanism for the observable singularity of circadian clocks. Importantly, these in vitro and in silico findings are further supported by in vivo observations that desynchronization underlies the multicell-level amplitude decrease in the rat suprachiasmatic nucleus induced by critical light pulses.  相似文献   

15.
16.
The importance of circadian clocks in the regulation of adult physiology in mammals is well established. In contrast, the ontogenesis of the circadian system and its role in embryonic development are still poorly understood. Although there is experimental evidence that the clock machinery is present prior to birth, data on gestational clock functionality are inconsistent. Moreover, little is known about the dependence of embryonic rhythms on maternal and environmental time cues and the role of circadian oscillations for embryonic development. The aim of this study was to test if fetal mouse tissues from early embryonic stages are capable of expressing endogenous, self-sustained circadian rhythms and their contribution to embryogenesis. Starting on embryonic day 13, we collected precursor tissues for suprachiasmatic nucleus (SCN), liver and kidney from embryos carrying the circadian reporter gene Per2::Luc and investigated rhythmicity and circadian traits of these tissues ex vivo. We found that even before the respective organs were fully developed, embryonic tissues were capable of expressing circadian rhythms. Period and amplitude of which were determined very early during development and phases of liver and kidney explants are not influenced by tissue preparation, whereas SCN explants phasing is strongly dependent on preparation time. Embryonic circadian rhythms also developed in the absence of maternal and environmental time signals. Morphological and histological comparison of offspring from matings of Clock-Δ19 mutant and wild-type mice revealed that both fetal and maternal clocks have distinct roles in embryogenesis. While genetic disruptions of maternal and embryonic clock function leads to increased fetal fat depots, abnormal ossification and organ development, Clock gene mutant newborns from mothers with a functional clock showed a larger body size compared to wild-type littermates. These data may contribute to the understanding of the ontogenesis of circadian clocks and the risk of disturbed maternal or embryonic circadian rhythms for embryonic development.  相似文献   

17.
The ins and outs of circadian timekeeping.   总被引:5,自引:0,他引:5  
  相似文献   

18.
19.
Albrecht U 《Neuron》2012,74(2):246-260
The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24?hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. The interplay between the central neural and peripheral tissue clocks is not fully understood and remains a major challenge in determining how neurological and metabolic homeostasis is achieved across the sleep-wake cycle. Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.  相似文献   

20.
Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals. Nevertheless, it is still not clear whether the observed changes reflect a processing of an altered photic input from the retina, rather than an imprinting of the intrinsic molecular clock mechanisms. Here, we addressed the issue by systematically probing the mouse circadian system at various levels. Firstly, we used electroretinography, pupillometry and histology protocols to show that gross retinal function and morphology in the adult are largely independent of postnatal light experiences that modulate circadian photosensitivity. Secondly, we used circadian activity protocols to show that only the animal''s behavioral responses to chronic light exposure, but not to constant darkness or the acute responses to a light stimulus depend on postnatal light experience. Thirdly, we used real-time PER2::LUC rhythm recording to show long-term changes in clock gene expression in the SCN, but also heart, lung and spleen. The data showed that perinatal light mainly targets the long-term adaptive responses of the circadian clock to environmental light, rather than the retina or intrinsic clock mechanisms. Finally, we found long-term effects on circadian peripheral clocks, suggesting far-reaching consequences for the animal''s overall physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号