首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian rhythms – near 24?h intrinsic biological rhythms – modulate many aspects of human physiology and hence disruption of circadian rhythms may have an important impact on human health. Experimental work supports a potential link between irregular circadian rhythms and several key risk factors for cardiovascular disease including hypertension, obesity, diabetes and dyslipidemia, collectively termed the metabolic syndrome. While several epidemiological studies have demonstrated an association between shift-work and the components of the metabolic syndrome in working-age adults, there is a relative paucity of data concerning the impact of non-occupational circadian irregularity in older women and men. To address this question, we studied 7 days of actigraphic data from 1137 older woman and men participating in the Rush Memory and Aging Project, a community-based cohort study of the chronic conditions of aging. The regularity of activity rhythms was quantified using the nonparametric interdaily stability metric, and was related to the metabolic syndrome and its components obesity, hypertension, diabetes and dyslipidemia. More regular activity rhythms were associated with a lower odds of having the metabolic syndrome (OR?=?0.69, 95% CI?=?0.60–0.80, p?=?5.8?×?10?7), being obese (OR?=?0.73, 95% CI?=?0.63–0.85, p?=?2.5?×?10?5), diabetic (OR?=?0.76, 95% CI?=?0.65–0.90, p?=?9.3?×?10?4), hypertensive (OR?=?0.78, 95% CI?=?0.66–0.91, p?=?2.0?×?10?3) or dyslipidemic (OR?=?0.82, 95% CI?=?0.72–0.92, p?=?1.2?×?10?3). These associations were independent of differences in objectively measured total daily physical activity or rest, and were not accounted for by prevalent coronary artery disease, stroke or peripheral artery disease. Moreover, more regular activity rhythms were associated with lower odds of having cardiovascular disease (OR?=?0.83; 95% CI?=?0.73–0.95, p?=?5.7?×?10?3), an effect that was statistically mediated by the metabolic syndrome. We conclude that irregular activity rhythms are associated with several key components of the metabolic syndrome in older community-dwelling adults, and that the metabolic syndrome statistically partially mediates the association between activity rhythms and prevalent cardiovascular disease. Although additional longitudinal and experimental studies are needed to conclusively delineate the causal relationships underlying these associations, these findings are consistent with preclinical data, and add further support for investigations of the irregularity of activity rhythms as a potential therapeutic target to decrease the burden of cardiovascular disease in older adults.  相似文献   

2.
Min H  Guo H  Xiong J 《FEBS letters》2005,579(3):808-812
Circadian rhythms are known to exist in all groups of eukaryotic organisms as well as oxygenic photosynthetic bacteria, cyanobacteria. However, little information is available regarding the existence of rhythmic behaviors in prokaryotes other than cyanobacteria. Here we report biological rhythms of gene expression in a purple bacterium Rhodobacter sphaeroides by using a luciferase reporter gene system. Self-bioluminescent strains of Rb. sphaeroides were constructed, which produced a bacterial luciferase and its substrate, a long chain fatty aldehyde, to sustain the luminescence reaction. After being subjected to a temperature or light entrainment regime, the reporter strains with the luciferase genes driven by an upstream endogenous promoter expressed self-sustained rhythmicity in the constant free-running period. The rhythms were controlled by oxygen and exhibited a circadian period of 20.5 h under aerobic conditions and an ultradian period of 10.6-12.7 h under anaerobic conditions. The data suggest a novel endogenous oscillation mechanism in purple photosynthetic bacteria. Elucidation of the clock-like behavior in purple bacteria has implications in understanding the origin and evolution of circadian rhythms.  相似文献   

3.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

4.
The endogenous cardiac activity rhythm of the Norway lobster Nephrops norvegicus was studied under constant conditions of darkness by means of a computer-aided monitoring system (CAPMON). Time series recordings of the heart rate (beats min?1) were obtained from 47 adult males freshly collected from the continental slope (400–430?m) in the western Mediterranean. Periodogram analysis revealed the occurrence of circadian periodicity (of around 24?h) in most cases. A large percentage of animals showed significant ultradian periods (of around 12 and 18?h). The analysis of the circadian time series revealed the occurrence of peaks of heart rate activity during the expected night phase of the cycle. These results are discussed in relation to the emergence and locomotor activity rhythms of the species.  相似文献   

5.
The estimation of human circadian rhythms from experimental data is complicated by the presence of “masking” effects associated with the sleep-wake cycle. The observed rhythm may include a component due to masking, as well as the endogenous component linked to a circadian pacemaker. In situations where the relationship between the sleep-wake cycle and the circadian rhythm is not constant, it may be possible to obtain individual estimates of these two components, but methods commonly used for the estimation of circadian rhythms, such as the cosinor analysis, spectral analysis, average waveforms and complex demodulation, have not generally been adapted to identify the modulations that arise from masking. The estimates relate to the observed rhythms, and the amplitudes and acrophases do not necessarily refer to the endogenous rhythm.

In this paper methods are discussed for the separation of circadian and masking effects using regression models that incorporate a sinusoidal circadian variation together with functions of time since sleep and time during sleep. The basic model can be extended to include a time-varying circadian rhythm and estimates are available for the amplitude and phase at a given time, together with their joint confidence intervals and tests for changes in amplitude and acrophase between any two selected times. Modifications of these procedures are discussed to allow for non-sinusoidal circadian rhythms, non-additivity of the circadian and time-since-sleep effects and the breakdown of the usual assumptions concerning the residual errors.

This approach enables systematic masking effects associated with the sleep-wake cycle to be separated from the circadian rhythm, and it has applications to the analysis of data from experiments where the sleep-wake cycle is not synchronized with the circadian rhythm, for example after time-zone transitions or during irregular schedules of work and rest.  相似文献   

6.
In order to optimize chronotherapeutic schedules (designs), we examined the interindividual differences in chronopharmacologic effects of drugs with consideration of the following three factors: (a) inherited factors of direct relevance to chronopharmacology (genetic variability, gender-related differences) as well as age-related differences; (b) interindividual difference in chronoeffective-ness related to disease (e.g., various types and stages of cancer, affective disorders, etc.) as well as to drug-dependent alteration (phase shifts, distortion) of biological rhythms; and (c) means to solve problems resulting from the need of individualization in chronotherapy. These involve the use of circadian marker rhythms (MR) whose characteristics (peak or trough time, amplitude, etc.) can be precisely quantified and thus are applicable as a reference system for physiologic, pathologic, pharmacologic, and therapeutic uses. The MR has to be specific and pertinent and must be easily monitored and documented. This approach can be further advanced by the use of a battery of MRs rather than a single MR. Other suggested means relate to the fact that chronobiotics (agents capable of influencing parameters of a set of biological rhythms) should be considered (e.g., corticoids and adrenocorticotropic hormone) and/or to the subject's synchronization should be enforced by “conventional” zeitgebers (e.g., bright light, physical activity).  相似文献   

7.
Studies suggest some physiologic, cognitive, and behavioral 24h rhythms are generated by cyclic components that are shorter in period than circadian. The aim of this study was [1] to examine the hypothesis that 24h human performance rhythms arise from the integration of high-frequency endogenous components and [2] to quantify the contribution of each higher frequency component to the phenotype of the rhythm. We monitored the performance of 9 experienced pilots by employing an array of cognitive-based tests conducted in a flight simulator so that, over the 6-day experiment, data were obtained for each 2h interval of the 24h. The activity-rest schedule of the subjects, no matter the exact clock time schedule of sleep and activity, always consisted of 14h activity (when they carried out regular professional duties) and 10h rest, with at least 8h of sleep. The simulated combat scenarios consisted of simple and complex tasks associated with target interception, aircraft maneuvering, and target shooting and downing. The results yielded two indices: the number of prominent periodicities in the time series and the relative magnitude of the amplitude of each relative to the construction of the composite 24h waveform. Three cyclic components (8h, 12h, and 24h) composed the observed 24h performance pattern. The dominant period and acrophase (peak time) of the compound output rhythm were determined by the interplay between the amplitudes of the various individual ultradian components. Task complexity (workload) increases the expression of the ultradian entities in the 24h pattern. We constructed a model composed of the multiple ultradian components; the composite output defined a “time span” (of 2h-4h duration) as opposed to an exact “time point” of high and low performance, endowing elevated functional capability. (Chronobiology International, 18(6), 987-1003, 2001)  相似文献   

8.
This paper proposes an abstract mathematical frame for describing some features of biological time. The key point is that usual physical (linear) representation of time is insufficient, in our view, for the understanding key phenomena of life, such as rhythms, both physical (circadian, seasonal …) and properly biological (heart beating, respiration, metabolic …). In particular, the role of biological rhythms do not seem to have any counterpart in mathematical formalization of physical clocks, which are based on frequencies along the usual (possibly thermodynamical, thus oriented) time. We then suggest a functional representation of biological time by a 2-dimensional manifold as a mathematical frame for accommodating autonomous biological rhythms. The “visual” representation of rhythms so obtained, in particular heart beatings, will provide, by a few examples, hints towards possible applications of our approach to the understanding of interspecific differences or intraspecific pathologies. The 3-dimensional embedding space, needed for purely mathematical reasons, allows to introduce a suitable extra-dimension for “representation time”, with a cognitive significance.  相似文献   

9.
Two groups of healthy subjects were studied indoors, first while living normally for 8 days (control section) and then for 18 × 27h “days” (experimental section). This schedule forces the endogenous (body clock-driven) and exogenous (lifestyle-driven) components of circadian rhythms to run independently. Rectal temperature and wrist movement were measured throughout and used as markers of the amplitude of the circadian rhythm, with the rectal temperature also “purified” by means of the activity record to give information about the endogenous oscillator. Results showed that, during the experimental days, there were changes in the amplitude of the overt temperature rhythm and in the relative amounts of out-of-bed and in-bed activity, both of which indicated an interaction between endogenous and exogenous components of the rhythm. However, the amplitude and the amount of overlap were not significantly different on the control days (when endogenous and exogenous components remained synchronized) and those experimental days when endogenous and exogenous components were only transiently synchronized; also, the amplitudes of purified temperature rhythms did not change significantly during the experimental days in spite of changes in the relationship between the endogenous and exogenous components. Neither result offers support for the view that the exogenous rhythm alters the amplitude of oscillation of the endogenous circadian oscillator in humans.  相似文献   

10.
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals. (Chronobiology International, 17(4), 433–451, 2000)  相似文献   

11.
Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30?mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.  相似文献   

12.
Night‐time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0‐h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made.  相似文献   

13.
In this study I review the subject of biological rhythms in scorpions. This will include only some of the diel rhythmic endogenous physiological functions and not the locomotory rhythmicity, which will be dealt separately. Most studies reported here were conducted on 13 scorpion species that were studied in 39 different studies. Most of these (66.7%) were studies on a single species (Heterometrus fulvipes). Being a scorpionid, it sits and waits near its burrow not being very active, especially the females. The fact that experimenting was carried out irrespective of species diversity, gender, ecological or physiological conditions, and was usually done on animals kept in captivity for some time before the experimenting had started, is a major drawback to this kind of study. Although the main conclusion appears to be that enzymes reached their peak activity at 20.00 h, there are some exceptions showing otherwise that need further study in order to explain them.  相似文献   

14.
The present study was conducted to evaluate the effect of a 7 d continuous infusion of ropivacaine on the 24 h rhythms of body temperature, heart rate, and locomotor activity. After an initial 7 d baseline, rats were randomly divided into two groups of 4 rats each to receive ropivacaine or saline via an osmotic pump for 7 consecutive days. The pumps were removed thereafter and observed during a 7 d recovery span. The studied circadian rhythms were measured by radiotelemetry throughout each of the 7 d periods. An additional group of 4 rats was studied under the same experimental conditions to assess the plasma levels of ropivacaine on days 3 and 8 following pump implantation. Our results indicate that ropivacaine does not induce loss of the circadian rhythms of body temperature, heart rate, or locomotor activity; a prominent period of 24 h was found for all variables in all animals, before, during, and after ropivacaine treatment. However, ropivacaine treatment did modify some characteristics of the rhythms; it increased the MESOR (24 h mean) of the heart rate and locomotor activity rhythms and advanced the acrophase (peak time) of the locomotor activity circadian rhythm. The present study indicates that the circadian rhythms of heart rate and locomotor activity are modified after continuous infusion of ropivacaine, which is of particular interest, given the potential cardiotoxicity of this local anesthetic agent.  相似文献   

15.
The rabbit is particularly suitable for investigating the development of mammalian circadian function. Blind at birth, the pups are only visited by the mother to be nursed once every 24 h for about 3 min and so can be studied largely without maternal interference. They anticipate the mother's visit with increased behavioral arousal and with a rise in body temperature, both of which represent endogenous circadian rhythms. We now report that in newborn pups the suprachiasmatic nuclei of the hypothalamus (SCN; the main circadian pacemaker in mammals) show endogenous 24‐h rhythmicity in the expression of the clock genes Per1, Per2, and Bmal1. Pups nursed from postnatal days 1 to 7 and fasted to day 9 showed the same rhythms of clock gene expression as normally nursed controls. We also report that these rhythms are entrained by nursing. Pups killed on postnatal days 3–4 showed the same rhythms in gene expression as pups in the previous experiment, whereas littermates subsequently nursed from postnatal days 4 to 7 with nursing delayed 6 h showed a corresponding shift in the diurnal pattern of clock gene expression. Consistent with this, two groups of pups implanted with telemetric thermal sensors and nursed 6 h apart had daily patterns in body temperature synchronized with the two different nursing times. We conclude that the expression of clock genes associated with the newborn rabbit's circadian system is entrained by nonphotic cues accompanying nursing, the exact nature of which now needs to be clarified. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

16.
The endocrine axis controlling the stress response displays daily rhythms in many factors such as adrenal sensitivity and cortisol secretion. These rhythms have mostly been described in mammals, whereas they are poorly understood in teleost fish, so that their impact on fish welfare in aquaculture remains unexplored. In the present research, the authors investigated the daily rhythms in the hypothalamus-pituitary-interrenal (HPI) axis in the flatfish Solea senegalensis, which has both scientific and commercial interest. In a first experiment, hypothalamic expression of corticotropin-releasing hormone (crh) and its binding protein (crhbp), both pituitary proopiomelanocortin A and B (pomca and pomcb) expression, as well as plasma cortisol, glucose, and lactate levels were analyzed throughout a 24-h cycle. All variables displayed daily rhythms (cosinor, p?<?.05), with acrophases varying depending on the factor analyzed: crh and cortisol peaked at the beginning of the dark phase (zeitgeber time [ZT]?=?14.5 and 14.4?h, respectively), pomca and pomcb as well as glucose at the beginning of the light phase (ZT?=?1.2, 2.4, and 3.4?h, respectively), and crhbp and lactate at the end of the dark phase (ZT?=?22.3 and 23.0?h, respectively). In a second experiment, the influence of an acute stressor (30 s of air exposure), applied at two different time points (ZT 1 and ZT 13), was tested. The stress response differed depending on the time of day, showing higher cortisol values (96.2?±?10.7?ng/mL) when the stressor was applied at ZT 1 than at ZT 13 (52.6?±?11.1?ng/mL). This research describes for the first time the daily rhythms in endocrine factors of the HPI axis of the flatfish S. senegalensis, and the influence of daytime on the stress responses. A better knowledge of the chronobiology of fish provides a helpful tool for understanding the circadian physiology of the stress response, and for designing timely sound protocols to improve fish welfare in aquaculture. (Author correspondence: )  相似文献   

17.
Self-directed aggressive behaviors of human beings show a 24h pattern. The aim of this study was to evaluate if violence of psychiatric inpatients against one another and hospital staff varies over the 24h. The clock time occurrence of 334 episodes of assault behaviors by 119 psychiatric inpatients (78 males and 41 females, mean age 34.8 ± 11.3 years) committed during a 5-year span in the psychiatric unit of the university-based hospital of Ferrara, Italy, was evaluated. The clock time of each event was categorized by hour during the 24h and into one of four 6h intervals for analysis of temporal variation by cosinor and χ2 tests, respectively. A significant 24h variation, characterized by an early afternoon peak, was detected irrespective of gender and number (single vs. repeated) of episodes committed. Changes during the 24h in ward activity, patient contact, and endogenous circadian rhythms are likely to contribute to the observed 24h pattern, although further study is needed to confirm our findings and to define causal factors. (Chronobiology International, 18(3), 503–511, 2001)  相似文献   

18.
《Journal of Physiology》2013,107(4):298-309
Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep–wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep–wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach.  相似文献   

19.
《Chronobiology international》2013,30(8):1050-1065
We investigated the circadian synchronization/desynchronization (by field-study assessment of differences in period, τ, of 16 coexisting and well-documented rhythms) of 30 healthy firemen (FM) exposed to irregular, difficult, and stressful nocturnal work hours who demonstrated excellent clinical tolerance (allochronism). Three groups of FM were studied (A?=?12 FM on 24-h duty at the fire station; B?=?9 FM on 24-h duty at the emergency call center; C?=?9 day-shift administrative FM) of mostly comparable average age, body mass index, career duration, chronotype—morningness/eveningness, and trait of field dependence/independence. The self-assessed 16 circadian rhythms were (i) physiological ones of sleep-wake (sleep log), activity-rest (actography), body temperature (internal transmitter pill probe), right- and left-hand grip strength (hand dynamometer), systolic and diastolic blood pressure (BP) plus heart rate (ambulatory BP monitoring device); (ii) psychological ones (visual analog self-rating scales) of sleepiness, fatigue, fitness for work, and capacity to cope with aggressive social behavior; and (iii) cognitive ones of eye-hand skill and letter cancellation, entailing performance speed (tasks completed/unit time) and accuracy (errors). Data (4–6 time points/24?h; 2 591 480 values in total) were gathered continuously throughout two 8-d spans, one in winter 2010–2011 and one in summer 2011. Each of the resulting 938 unequal-interval time series was analyzed by a special power spectrum analysis to objectively determine the prominent τ. The desynchronization ratio (DR: number of study variables with τ?=?24.0?h/number of study variables?×?100) served to ascertain the strength/weakness of each rhythm per individual, group, and season. The field study confirmed, independent of group and season, coexistence of rather strong and weak circadian oscillators. Interindividual differences in DR were detected between groups and seasons (χ2, correlation tests, analysis of variance [ANOVA]). Moreover, in each group, both in winter and summer, a normal distribution was observed in the number of FM with rhythms with τ?=?24.0?h, e.g., ranging from 5/16 (large desynchronization) to 16/16 (no desynchronization). Such a normal distribution with intraindividual stability over time (i.e., seasons) is consistent with the hypothesis of an inherited origin of a differential propensity to circadian desynchronization and which is supported by the distribution of τs in winter and summer following the Dian-Circadian Genetic Model, i.e., with τ?=?24.0?h, τ?=?24.0?h?+?n(0.8?h), and τ?=?24.0?h???n(0.8?h).  相似文献   

20.
Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms “downstream” from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24h routine, sleeping at night) and unmasking (36h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men). (Chronobiology International, 17(3), 355–368, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号