首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

2.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

3.
The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of "an inverse size principle" of MU recruitment during ES.  相似文献   

4.
Twelve male subjects were tested to determine the relationship between motor unit (MU) activities and surface electromyogram (EMG) power spectral parameters with contractions increasing linearly from zero to 80% of maximal voluntary contraction (MVC). Intramuscular spike and surface EMG signals recorded simultaneously from biceps brachii were analyzed by means of a computer-aided intramuscular MU spike amplitude-frequency (ISAF) histogram and an EMG frequency power spectral analysis. All measurements were made in triplicate and averaged. Results indicate that there were highly significant increases in surface EMG amplitude (71 +/- 31.3 to 505 +/- 188 microV, p less than 0.01) and mean power frequency (89 +/- 13.3 to 123 +/- 23.5 Hz, p less than 0.01) with increasing force. These changes were accompanied by progressive increases in the firing frequency of MU's initially recruited, and of newly recruited MU's with relatively larger spike amplitudes. The group data in the ISAF histograms revealed significant increases in mean spike amplitude (412 +/- 79 to 972 +/- 117 microV, p less than 0.01) and mean firing frequency (17.8 +/- 5.4 to 24.7 +/- 4.1 Hz, p less than 0.01). These data suggest that surface EMG spectral analysis can provide a sensitive measure of the relative changes in MU activity during increasing force output.  相似文献   

5.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

6.
The present study examined the log-transformed electromyographic amplitude (EMG) versus force relationships for the medial gastrocnemius (MG) and soleus (SOL) in high- and moderate-activated subjects. Twenty-five (age = 21 ± 2 year; mass = 62 ± 12 kg) participants performed six submaximal contractions (30–90% maximal voluntary contraction [MVC]) with the interpolated twitch technique (ITT) performed at 90% MVC to calculate percent voluntary activation (% VA). Sixteen participants with > 90% VA at 90% MVC were categorized high-activated group; the remaining nine were the moderate-activated group. Linear regression models were fit to the log-transformed EMG–force relationships. The slope (b value) and the antilog of the Y-intercept (a value) were calculated. The b values from the MG EMG–force relationships were higher (P < 0.05) for the high-activated group (1.27 ± 0.13) than the moderate-activated group (0.88 ± 0.06). The a values and p–p M-wave amplitude values (collapsed across twitches [superimposed and potentiated]) were larger (P < 0.05) for the MG (1.17 ± 0.40 and 8.98 ± 0.46 mV) than the SOL (0.24 ± 0.07 and 4.48 ± 0.20 mV) when collapsed across groups. The b value from the log-transformed EMG–force relationships is an attractive model to determine if a subject has the ability to achieve high activation of their MG without muscle or nerve stimulation.  相似文献   

7.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

8.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

9.
Six men were studied to determine the interrelationships among blood supply, motor unit (MU) activity and lactate concentrations during intermittent isometric contractions of the hand grip muscles. The subjects performed repeated contractions at 20% of maximal voluntary contraction (MVC) for 2 s followed by 2-s rest for 4 min with either unhindered blood circulation or arterial occlusion given between the 1st and 2nd min. The simultaneously recorded intramuscular MU spikes and surface electromyogram (EMG) data indicated that mean MU spike amplitude, firing frequency and the parameters of surface EMG power spectra (mean power frequency and root mean square amplitude) remained constant during the experiment with unhindered circulation, providing no electrophysiological signs of muscle fatigue. Significant increases in mean MU spike amplitude and frequency were, however, evident during the contractions with arterial occlusion. Similar patterns of significant changes in the surface EMG spectra parameters and venous lactate concentration were also observed, while the integrated force-time curves remained constant. These data would suggest that the metabolic state of the active muscles may have played an important role in the regulation of MU recruitment and rate coding patterns during exercise.  相似文献   

10.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

11.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

12.
The purpose of this study was to determine (i) if decomposition-based quantitative electromyography (DQEMG) could detect changes in motor unit potential (MUP) morphology and motor unit (MU) firing pattern statistics associated with muscle fatigue, (ii) if any detected changes are correlated with surface electromyographic (SEMG) signs of fatigue, and (iii) if significant fatigue-dependent changes are repeatable within individuals. Mean MU firing rates and the morphology of MUPs detected using needle and surface electrodes during constant-torque isometric contractions held until exhaustion were investigated in the brachioradialis (BR) muscle in 10 healthy volunteers (mean age=28.6 yr, SD+/-3.9). Time dependant changes were investigated using an analysis of variance with normalized time as a main effect. Partial correlation coefficients were computed using a repeated measures analysis of covariance to determine if changes in MU firing rates, needle-detected MUPs and surface-detected MUPs (SMUPs) were related to changes in SEMG signal amplitude and frequency parameters. Intraclass correlation coefficients (ICCs) were used to determine the within-subject repeatability of changes in MU firing rates, and MUP and SMUP parameters. Significant decreases in mean MU firing rates were found along with significant increases in various duration and area related parameters in both MUPs and SMUPs across the fatiguing contraction. The SEMG signal demonstrated the expected changes with fatigue: an increase in amplitude and a decrease in frequency content. SEMG amplitude was significantly positively correlated with SMUP peak-to-peak voltage (r=0.85, p<0.05), and SMUP area (r=0.86, p<0.05). Mean power frequency was significantly negatively correlated with SMUP negative peak duration (r=-0.74, p<0.05). The significant time-dependent changes were reliably observed (ICCs were 0.94 for MUP peak to peak amplitude, 0.97 for MUP area and 0.95 for MUP area to amplitude ratio, 0.95 for SMUP peak-to-peak voltage, 0.83 for SMUP area, 0.99 for SMUP negative peak amplitude and 0.88 for SMUP negative peak area). The decreases in mean MU firing rates measured along with the increases in amplitude, duration and area parameters of MUPs and SMUPs and their partial correlation with SEMG amplitude during submaximal fatiguing contractions of the BR, suggest that recruitment is a main cause of increased SEMG amplitude parameters with fatigue. We conclude that DQEMG can be effectively and reliably used to detect changes in physiological characteristics of MUs that accompany fatigue.  相似文献   

13.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

14.
The human triceps surae (soleus, medial (MG) and lateral (LG) gastrocnemii) is complex and important for posture and gait. The soleus exhibits markedly lower motor unit firing rates (MUFRs; ∼16 Hz) during maximal voluntary isometric contraction (MVC) than other limb muscles, but this information is unknown for the MG and LG. During multiple visits, subjects performed a series of 5–7, ∼7-s plantar flexor MVCs with tungsten microelectrodes inserted into the MG and LG. During a separate testing session, another group of subjects performed submaximal isometric contractions at 25%, 50%, and 75% MVC with inserted fine-wires in the MG, LG and soleus. Maximum steady-state MUFRs for MG and LG (∼23 Hz) were not different, but faster than prior reports for the soleus. No differences between the three triceps surae components were detected for 25% or 50% MVC, but at 75% MVC, the MG MUFRs were 31% greater than soleus. The triceps surae exhibit similar torque modulation strategies at <75% MVC, but to achieve higher contraction intensities (>75% MVC) the gastrocnemii rely on faster rates to generate maximal torque than the soleus. Therefore, the MG and LG exhibit a larger range of MUFR capacities.  相似文献   

15.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

16.
We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.  相似文献   

17.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

18.
The recruitment and firing rate of biceps brachii (BB) and brachioradialis (BR) motor units (MUs) were studied in the course of fatiguing isometric contractions at 20%-30% of maximal voluntary contraction (MVC). MU recruitment generally occurred throughout the maintained contraction and was similar for BB and BR muscles. Newly recruited MUs started to discharge in the form of bursts, the duration of which increased until a continuous rhythmical firing was achieved. Within each burst, the first interval between two consecutive discharges was usually the shortest. MU threshold was lowered just after the limit time of the maintained contraction. The MU's firing rate either increased or remained stable as a function of the elapsed time. It is concluded that (1) in fatiguing isometric contractions at 20%-30% MVC contractile failure is mainly compensated for by MU recruitment and a lowered MU threshold and (2) differences between in surface changes in the electromyogram of BB and BR muscles cannot easily be explained by related differences in MU firing rate and recruitment.  相似文献   

19.
The present study examined, whether or not mechanomyogram (MMG) amplitude and frequency component could reflect the contractile properties of the triceps surae muscles, composed of relatively slow soleus (SOL) and fast medial gastrocnemius (MG), during experimentally induced hypothermia condition. In eight male subjects, lying in prone position, supramaximal single twitch and repetitive electrical stimulations at 10 Hz were applied at the intramuscular temperatures of control (34 degrees C), 15, 20, and 25 degrees C, respectively. The hypothermia induced substantial reduction in muscle contractile properties, e.g. prolonged twitch contraction and half relaxation times, resulted in a highly significant reduction in the fluctuation of force signal during the repetitive stimulations. These changes were almost mirrored by the similar and significant reductions in the MMG amplitude in both SOL and MG. Power spectrum analysis revealed that peak frequency components of MMG and fluctuation of force were almost matched with the applied stimulation frequencies, independent of the temperature condition. These results strongly suggest that MMG analysis could be employed to study muscle contractile properties varying across different physiological conditions.  相似文献   

20.
The purpose of this study was to compare fatigue and recovery of maximal voluntary torque [maximal voluntary contraction (MVC)] and muscle oxygenation after voluntary (Vol) and electrically stimulated (ES) protocols of equal torque production. On 1 day, 10 male subjects [25 yr (SD 4)] completed a Vol fatigue protocol and, on a separate day, an ES fatigue protocol of the right dorsiflexors. Each task involved 2 min of intermittent (2-s on, 1-s off) isometric contractions at 50% of MVC. For the ES protocol, stimulation was delivered percutaneously to the common peroneal nerve at a frequency of 25 Hz. Compared with the Vol protocol, the ES protocol caused a greater impairment in MVC (75 vs. 83% prefatigue value; Pre) and greater increase in 50-Hz half relaxation time (165 vs. 117% Pre) postexercise. After acute (1 min) recovery, MVC impairment was similar for both protocols, whereas 50- Hz half relaxation time was still greater in the ES than Vol protocol. Total hemoglobin decreased to a similar extent in both protocols during exercise, but it was elevated above the resting value to a significantly greater extent for the ES protocol in recovery (18 vs. 11 microM). Oxygen saturation was significantly lower in the ES than Vol protocol during exercise (46 vs. 57% Pre), but it was significantly greater during recovery (120 vs. 105% Pre). These findings suggest that despite, equal torque production, ES contractions impose a greater metabolic demand on the muscle that leads to a transient greater impairment in MVC. The enforced synchronization and fixed frequency of excitation inherent to ES are the most likely causes for the exacerbated changes in the ES compared with the Vol protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号