首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have developed a reconstituted model system to study the interaction of the Golgi membranes isolated from rabbit liver with taxol-stabilized bovine-brain microtubules without microtubule-associated proteins (MAPs). The Golgi membranes are associated with microtubules. The sheets of vesicles and the membranous tubules are observed along microtubules by direct visualization using differential-interference-contrast, dark field, or fluorescence microscopy. The monoclonal antibody against Golgi membranes suggests that the Golgi membranes, but not the contaminating vesicles, are interacting with microtubules. The degree of association is assayed quantitatively using rhodamine-labeled microtubules after separation of the complex from unbound microtubules by centrifugation upon sucrose gradient. The association is inhibited by crude MAPs, purified MAP2, or 1.0 mM ATP. However, the association neither requires the cytosol from rat liver or bovine brain nor N-ethylmaleimide, brefeldin A, or GTP-gamma-S. The association is mediated by trypsin-sensitive peripheral protein(s) on the Golgi membranes.  相似文献   

2.
We have developed an in vitro assay for characterizing the binding of elements of the Golgi complex to microtubules. The binding assay comprises three distinct components, Golgi elements purified from Vero cells by subcellular fractionation, taxol-polymerized tubulin from bovine brain coupled to magnetic beads and cytosol from HeLa cells. Binding of Golgi elements to microtubules is quantitated by measuring the activity of the Golgi marker enzyme, galactosyltransferase, associated with the microtubule-coated beads retrieved with a magnet. In the presence of cytosol, 35 to 45% of the total input of galactosyltransferase activity (Golgi elements) bind to microtubules; only 3% of the Golgi elements bind to microtubules, however, in the absence of cytosolic factors. This binding is saturable at a cytosol concentration of approximately 5 mg/ml or at a high input of Golgi elements. Cytosol-stimulated binding of Golgi elements to microtubules is decreased to less than 15% when cytosol is pretreated with 2 mM N-ethylmaleimide (NEM) and it is abolished when cytosolic proteins are inactivated by heat or when microtubules have been coated with heat-stable microtubule-associated proteins (MAPs). Trypsinization of the membranes of the Golgi elements abolishes their ability to bind to microtubules. Furthermore, inactivation of cytoplasmic dynein by UV/vanadate treatment does not affect the binding. This suggests that the interaction of Golgi elements with microtubules depends on NEM-sensitive cytosolic factors and membrane-associated receptors, but not on the microtubule-based motor protein cytoplasmic dynein.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2229-2239
A monoclonal antibody (M3A5), raised against microtubule-associated protein 2 (MAP-2), recognized an antigen associated with the Golgi complex in a variety of non-neuronal tissue culture cells. In double immunofluorescence studies M3A5 staining was very similar to that of specific Golgi markers, even after disruption of the Golgi apparatus organization with monensin or nocodazole. M3A5 recognized one band of Mr approximately 110,000 in immunoblots of culture cell extracts; this protein, designated 110K, was enriched in Golgi stack fractions prepared from rat liver. The 110K protein has been shown to partition into the aqueous phase by Triton X-114 extraction of a Golgi-enriched fraction and was eluted after pH 11.0 carbonate washing. It is therefore likely to be a peripheral membrane protein. Proteinase K treatment of an isolated Golgi stack fraction resulted in complete digestion of the 110K protein, both in the presence and absence of Triton X-100. A the 110K protein is accessible to protease in intact vesicles in vitro, it is presumably located on the cytoplasmic face of the Golgi membrane in vivo. The 110K protein was able to interact specifically with taxol-polymerized microtubules in vitro. These results suggest that the 110K protein may serve to link the Golgi apparatus to the microtubule network and so may belong to a novel class of proteins: the microtubule-binding proteins.  相似文献   

4.
The signal for retention in the endoplasmic reticulum of the E3/19K protein of adenovirus type 2 is located within the carboxyl-terminal cytoplasmic extension. A synthetic peptide corresponding to this sequence showed affinity for beta-tubulin, could promote tubulin polymerization in vitro, and bound to taxol-polymerized microtubules. When compared with the microtubule binding sequences from two microtubule-associated proteins (MAPs; MAP2 and tau), we found similarities suggesting that the cytoplasmic tail might bind to tubulin/microtubules in a MAPs-like fashion. A synthetic peptide corresponding to the cytoplasmic tail of an E3/19K deletion mutant not retained in the endoplasmic reticulum was also tested. It had the same net charge but did not promote tubulin polymerization in vitro nor did it show measurable affinity for tubulin or microtubules. This indicates that binding to microtubules is important for retention of the E3/19K protein in the endoplasmic reticulum.  相似文献   

5.
A factor (33K protein) that modulates tubulin polymerization in vitro has been purified to homogeneity from porcine brain by ammonium sulfate fractionation and Whatman DE52, Toyo-pearl HW65C and Bio-Gel A 0.5 m column chromatographies. The purified fraction was free of nucleic acids and sugars. The activity of the purified 33K protein is pronase E sensitive but apparently heat- and trypsin-resistant though it undergoes tryptic digestion. The 33K protein inhibits polymerization of brain microtubule proteins in a dose-dependent manner and partially depolymerizes preformed microtubules. It also inhibits polymerization of purified starfish tubulin and microtubule elongation involving fragellar outer doublet microtubules and purified porcine brain tubulin. This suggests that the target of the 33K protein is tubulin rather than microtubule-associated proteins. The 33K protein causes incomplete depolymerization of microtubules and a new steady state is quickly attained which is apparently independent of microtubule mass concentration. Divalent cations such as calcium and magnesium do not modulate the inhibitory activity of the 33K protein.  相似文献   

6.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

7.
Tau, a microtubule-associated protein which copurifies with tubulin through successive cycles of polymerization and depolymerization, has been isolated from tubulin by phosphocellulose chromatography and purified to near homogeneity. The purified protein is seen to migrate during electrophoresis on acrylamide gels as four closely spaced bands of apparent molecular weights between 55,000 and 62,000. Specific activity for induction of microtubule formation from purified tubulin has been assayed by quantitative electron microscopy and is seen to be enhanced three- to fourfold in the purified tau when compared with the unfractionated microtubule-associated proteins. Nearly 90% of available tubulin at 1 mg/ml is found to be polymerizable into microtubules with elevated levels of tau. Moreover, the critical concentration for polymerization of the reconstituted tau + tubulin system is seen to be a function of tau concentration and may be lowered to as little as 30 μg of tubulin per ml. Under depolymerizing conditions, 50% of the tubulin at only 1 mg/ml may be driven into ring structures. A separate purification procedure for isolation of tau directly from cell extracts has been developed and data from this purification suggest that tau is present in the extract in roughly the same proportion to tubulin as is found in microtubules purified by cycles of assembly and disassembly. Tau is sufficient for both nucleation and elongation of microtubules from purified tubulin and hence the reconstituted tau + tubulin system defines a complete microtubule assembly system under standard buffer conditions. In an accompanying paper (Cleveland et al., 1977) the physical and chemical properties of tau are discussed and a model by which tau may function in microtubule assembly is presented.  相似文献   

8.
Effect of tau on the vinblastine-induced aggregation of tubulin   总被引:3,自引:2,他引:1       下载免费PDF全文
Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the presence of vinblastine. Thus, vinblastine may be a useful probe in elucidating the individual roles of tau and MAP 2 in microtubule assembly.  相似文献   

9.
Microtubule accessory proteins were isolated from porcine brain microtubules by phosphocellulose chromatography, and the high molecular weight protein (HMW protein), purified from this microtubule-associated fraction by electrophoretic elution from SDS gels, was used to raise antisera in rabbits. In agarose double diffusion tests, the antiserum obtained forms precipitin lines with purified HMW protein but not with tau protein or tubulin. When rat glial cells (strain C6) are examined by indirect immunofluorescence, this serum specifically stains a colchicine-sensitive filamentous cytoplasmic network in interphase cells, a network indistinguishable from that seen when cells are treated with antitubulin serum. In dividing cells, specific staining of the mitotic spindle and the stem body is observed with the antiserum to HMW protein. These studies indicate that HMW protein, like tau protein, is associated with microtubules in intact cells.  相似文献   

10.
A high molecular weight protein has been partially purified from sheaths of squid giant axons. This protein fraction was capable of restoring the membrane excitability of the squid axon which had been destroyed by internal perfusion of microtubule poison, when perfused along with microtubule proteins (Matsumoto et al. (1979) J. Biochem. 86, 1155-1158). This protein, designated as 260 K protein, was purified by gel filtration and Con A-Sepharose affinity chromatography. The apparent molecular weight of the axonal protein was estimated to be 260,000 by electrophoresis in the presence of sodium dodecylsulfate. This protein was revealed to be a glycoprotein. When phosphocellulose-purified tubulin was incubated with 260 K protein at 36 degrees C in the presence of dimethylsulfoxide, turbidity of the solution was much increased. 260 K protein co-sedimented with microtubles assembled from purified tubulin. Light microscopic and electron microscopic observations revealed that the high turbidity was due to bundling of microtubules which was caused by 260 K protein. On the other hand, the effect of this protein on the turbidity increase was not so prominent when microtubules were assembled from microtubule proteins consisting of tubulin and microtubule-associated proteins. High shear and low shear viscometry and co-sedimentation experiments revealed that 260 K protein had little effect on actin polymerization under the same medium conditions as used in tubulin polymerization.  相似文献   

11.
We have developed an affinity chromatography method for the isolation of microtubule-associated proteins (MAPs) from soluble cytoplasmic extracts of rat pancreas. Among the ten proteins which copurify with pancreas tubulin on a colchicine derivatives-affinity chromatography, three polypeptides of respectively 58, 55 and 48 kDa strongly bind to the microtubule affinity column. To begin to characterize these proteins, we have generated polyclonal antibodies against tau polypeptides from brains of immature chicken or rat. As judged by immunoblots, the three polypeptides seem to be immunologically related to the tau proteins previously localized in brain.  相似文献   

12.
Tubulin from the brine shrimp Artemia readily assembles in vitro in the absence of microtubule-associated proteins under conditions which do not permit assembly of tubulin from brain. Heated microtubule-associated protein preparations from bovine brain do, however, interact with Artemia tubulin, resulting in stimulation of tubulin assembly and formation of morphologically normal cold-sensitive microtubules. Addition of vinblastine to mixtures containing microtubules assembled in the presence of neural microtubule-associated proteins caused a drop and then a rise in turbidity of the solution. The turbidity changes were accompanied by the appearance of coils, presumably derived from the microtubules which disappeared upon addition of vinblastine. Coils also resulted when microtubule-associated proteins and vinblastine were added to tubulin before polymerization was initiated. Vinblastine prevented normal assembly and caused disruption of Artemia microtubules polymerized in the absence of microtubule-associated proteins. Under these conditions clumped or compact coils, different in appearance from those formed in the presence of the microtubule-associated proteins, were observed. The data confirm that tubulin from Artemia, an organism that is phylogenetically far removed from mammals, has retained binding sites for vinblastine and microtubule-associated proteins and that the interrelationship of these sites has been at least partially preserved. The incomplete depolymerization of Artemia microtubules in response to vinblastine when microtubule-associated proteins are absent suggests that the longitudinal tubulin-tubulin interactions involved in microtubule formation are more stable for Artemia than for neural tubulin.  相似文献   

13.
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.  相似文献   

14.
We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.  相似文献   

15.
During infection, adenovirus (Ad) capsids undergo microtubule-dependent retrograde transport as part of a program of vectorial transport of the viral genome to the nucleus. The microtubule-associated molecular motor, cytoplasmic dynein, has been implicated in the retrograde movement of Ad. We hypothesized that cytoplasmic dynein constituted the primary mode of association of Ad with microtubules. To evaluate this hypothesis, an Ad-microtubule binding assay was established in which microtubules were polymerized with taxol, combined with Ad in the presence or absence of microtubule-associated proteins (MAPs), and centrifuged through a glycerol cushion. The addition of purified bovine brain MAPs increased the fraction of Ad in the microtubule pellet from 17.3% +/- 3.5% to 80.7% +/- 3.8% (P < 0.01). In the absence of tubulin polymerization or in the presence of high salt, no Ad was found in the pellet. Ad binding to microtubules was not enhanced by bovine brain MAPs enriched for tau protein or by the addition of bovine serum albumin. Enhanced Ad-microtubule binding was also observed by using a fraction of MAPs purified from lung A549 epithelial cell lysate which contained cytoplasmic dynein. Ad-microtubule interaction was sensitive to the addition of ATP, a hallmark of cytoplasmic dynein-dependent microtubule interactions. Immunodepletion of cytoplasmic dynein from the A549 cell lysate abolished the MAP-enhanced Ad-microtubule binding. The interaction of Ad with both dynein and dynactin complexes was demonstrated by coimmunoprecipitation. Partially uncoated capsids isolated from cells 40 min after infection also exhibited microtubule binding. In summary, the primary mode of Ad attachment to microtubules occurs though cytoplasmic dynein-mediated binding.  相似文献   

16.
Changes in the hydrodynamic properties of microtubules induced by taxol   总被引:1,自引:0,他引:1  
Microtubule assembly was followed and monitored by (1) the turbidity at 350 nm, (2) the weight of the pelleted microtubules, (3) linear dichroism, LD tau, of the turbidity upon flow orientation, (4) the specific viscosity, eta spec, and (5) electron microscopy. These five methods showed the same features for normal microtubule assembly, but were different in the presence of taxol, a drug which binds to tubulin. The The apparent steady state of microtubule assembly in the presence of taxol as found by turbidity or the weight of pelleted polymer did not represent a stable state, as both LD tau and eta spec continued to change for a much longer time. Microtubules assembled in the presence of taxol from microtubule proteins as well as from purified tubulin were difficult to orient, as high flow gradients were needed and the maximal LD tau value represented only 20% of the LD tau for normal microtubules. In contrast to the slow relaxation of normal microtubules, rapid relaxation to random orientation was found in the presence of taxol. Low orientability was also indicated by electron micrographs, in which pelleted microtubules were seen to be randomly oriented in the presence of taxol. Taxol induced a very high eta spec, 4-times the steady-state value in the initial phase of assembly, which slowly declined again to a steady state, an effect which was also found for assembly of purified tubulin assembled in the absence of the microtubule-associated proteins. The presence of taxol did not change the relative amount and composition of the microtubule-associated proteins in the assembled microtubules. The results therefore suggest that taxol alters the hydrodynamic properties of the microtubules due to its interaction with tubulin and that this alteration is not an effect of the microtubule-associated proteins.  相似文献   

17.
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.  相似文献   

18.
MAPs (microtubule-associated proteins) were isolated from crayfish walking leg nerves. A major MAP was identified as a high molecular weight protein (270K). This protein co-migrated with mammalian MAP2, stimulated the polymerization of rat brain tubulin into microtubules, and was heat resistant. Rotary shadowing revealed that the 270K MAP is a long thin flexible structure. It formed cross-bridges of fine strands, linking microtubules with each other in vitro. These strands resemble the cross-bridges between microtubules observed in the crayfish axon permeabilized with saponin and quick-frozen, deep-etched. Antibodies against mammalian MAP2 cross-reacted with this crayfish MAP and stained the axoplasm of the walking leg nerves. Thus MAPs, especially the 270K MAP, appear to be a major component of the cross-linking strands between microtubules observed in the crayfish axon.  相似文献   

19.
Yeast proteins associated with microtubules in vitro and in vivo.   总被引:13,自引:7,他引:6       下载免费PDF全文
Conditions were established for the self-assembly of milligram amounts of purified Saccharomyces cerevisiae tubulin. Microtubules assembled with pure yeast tubulin were not stabilized by taxol; hybrid microtubules containing substoichiometric amounts of bovine tubulin were stabilized. Yeast microtubule-associated proteins (MAPs) were identified on affinity matrices made from hybrid and all-bovine microtubules. About 25 yeast MAPs were isolated. The amino-terminal sequences of several of these were determined: three were known metabolic enzymes, two were GTP-binding proteins (including the product of the SAR1 gene), and three were novel proteins not found in sequence databases. Affinity-purified antisera were generated against synthetic peptides corresponding to two of the apparently novel proteins (38 and 50 kDa). Immunofluorescence microscopy showed that both these proteins colocalize with intra- and extranuclear microtubules in vivo.  相似文献   

20.
Microtubules represent cytoplasmic structures that are indispensable for the maintenance of cell morphology and motility generation. Due to their regular structural organization, microtubules have become of great interest for preparation of in vitro nanotransport systems. However, tubulin, the major building protein of microtubules, is a thermolabile protein and is usually stored at −80 °C to preserve its conformation and polymerization properties. Here we describe a novel method for freeze-drying of assembly-competent tubulin in the presence of a nonreducing sugar trehalose. Even after prolonged storage at ambient temperature, rehydrated tubulin is capable of binding antimitotic drugs and assembling to microtubules that bind microtubule-associated proteins in the usual way. Electron microscopy confirmed that rehydrated tubulin assembles into normal microtubules that are able to generate motility by interaction with the motor protein kinesin in a cell-free environment. Freeze-drying also preserved preformed microtubules. Rehydrated tubulin and microtubules can be used for preparation of diverse in vitro and in vivo assays as well as for preparation of bionanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号