首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

2.
A crystal structure analysis of the synthetic deoxydodecamer d(CGCAAATTIGCG) which contains two adenosine.inosine (A.I) mispairs has revealed that, in this sequence, the A.I base-pairs adopt a A(anti).I(syn) configuration. The refinement converged at R = 0.158 for 2004 reflections with F greater than or equal to 2 sigma(F) in the range 7.0-2.5A for a model consisting of the DNA duplex and 71 water molecules. A notable feature of the structure is the presence of an almost complete spine of hydration spanning the minor groove of the whole of the (AAATTI)2 core region of the duplex. pH-dependent ultraviolet melting studies have suggested that the base-pair observed in the crystal structure is, in fact, a protonated AH+ (anti).I(syn) species and that the A.I base-pairs in the sequence studied display the same conformational variability as A.G mispairs in the sequence d(CGCAAATTGGCG). The AH+(anti).I(syn) base-pair predominates below pH 6.5 and an A(anti).I(anti) mispair is the major species present between pH 6.5 and 8.0. The protonated base-pairs are held together by two hydrogen bonds one between N6(A) and O6(I) and the other between N1(A) and N7(I). This second hydrogen bond is a direct result of the protonation of the N1 of adenosine. The ultraviolet melting studies indicate that the A(anti).I(anti) base-pair is more stable than the A(anti).G(anti) base-pair but that the AH+(anti).I(syn) base pair is less stable than its AH+(anti).G(syn) analogue. Possible reasons for this observation are discussed.  相似文献   

3.
Proton and phosphorus two-dimensional NMR studies are reported for the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) nonanucleotide duplex (designated X.A 9-mer) that contains a 1,N2-propanodeoxyguanosine exocyclic adduct, X5, opposite deoxyadenosine A14 in the center of the helix. The NMR studies detect a pH-dependent conformational transition; this paper focuses on the structure present at pH 5.8. The two-dimensional NOESY studies of the X.A 9-mer duplex in H2O and D2O solution establish that X5 adopts a syn orientation while A14 adopts an anti orientation about the glycosidic bond at the lesion site. The large downfield shift of the amino protons of A14 demonstrates protonation of the deoxyadenosine base at pH 5.8 such that the protonated X5(syn).A14(anti) pair is stabilized by two hydrogen bonds at low pH. At pH 5.8, the observed NOE between the H8 proton of X5 and the H2 proton of A14 in the X.A 9-mer duplex demonstrates unequivocally the formation of the protonated X5(syn).A14(anti) pair. The 1,N2-propano bridge of X5(syn) is located in the major groove. Selective NOEs from the exocyclic methylene protons of X5 to the major groove H8 proton of flanking G4 but not G6 of the G4-X5-G6 segment provide additional structural constraints on the local conformation at the lesion site. A perturbation in the phosphodiester backbone is detected at the C13-A14 phosphorus located at the lesion site by 31P NMR spectroscopy. The two-dimensional NMR studies have been extended to the related complementary X.G 9-mer duplex that contains a central X5.G14 lesion in a sequence that is otherwise identical with the X.A 9-mer duplex. The NMR experimental parameters are consistent with formation of a pH-independent X5(syn).G14(anti) pair stabilized by two hydrogen bonds with the 1,N2-propano exocyclic adduct of X5(syn) located in the major groove.  相似文献   

4.
The synthetic dodecanucleotide d(CGCAAATTGGCG) has been analysed by single-crystal X-ray diffraction techniques and the structure refined to R = 0.16 and 2.25 A resolution, with the location of 94 solvent molecules. The sequence crystallizes as a full turn of a B-DNA helix with ten Watson-Crick base-pairs and two adenine-guanine mispairs. The analysis clearly shows that the mismatches are of the form A(anti).G(syn). Thermal denaturation studies indicate that the stability of the duplex is strongly pH dependent, with a maximum at pH 5.0, suggesting that the base-pair is stabilized by protonation. Three different arrangements have been observed for base-pairs between guanine and adenine and it is likely that A.G mismatch conformation is strongly influenced by dipole-dipole interactions with adjacent base-pairs.  相似文献   

5.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.  相似文献   

7.
G A Leonard  A Guy  T Brown  R Téoule  W N Hunter 《Biochemistry》1992,31(36):8415-8420
The structure of the synthetic deoxydodecamer d(CGCGAATT(O8A)GCG)2 (O8A = 8-oxoadenine) has been determined by single-crystal X-ray diffraction techniques. The oligonucleotide crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 25.48 A, b = 41.84 A, and c = 64.91 A. The refinement has converged with an R-factor of 0.151 for 1119 reflections in the resolution range 8.0-2.25 A. Sixty-seven solvent molecules were located during the course of the refinement. The B-DNA helix consists of ten Watson-Crick base pairs and two guanine-8-oxoadenine (G.O8A) base pairs. In order to achieve hydrogen-bonding complementarity between the two bases, an unusual G(anti).O8A-(syn) wobble conformation is adopted. It is proposed that the G.O8A mispairs are held together by a network of four interbase hydrogen bonds which are the result of the formation of two reverse three-center hydrogen-bonding systems. These involve one carbonyl oxygen lone pair interacting with two hydrogen atoms. In a departure from previous observations of the characteristics of purine-purine anti-syn base pairs, lambda 1 and lambda 2, the angles between the glycosidic bonds and the C1'-C1' vector, are symmetric. A reassessment of the other purine-purine mispairs suggests that similar three-center hydrogen bonds may occur and make a contribution to stabilizing other base pairings.  相似文献   

8.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The conformational properties of the DNA duplex d(CGCGAATTGGCG)2, which contains two noncomplementary G.G base pairs, have been examined in aqueous solution by 1H and 31P NMR as a function of temperature. The G.G mismatch is highly destabilizing, with a Tm value 35 K below that observed for the native EcoRI dodecamer. The dodecamer appears symmetric in the NMR spectra and exists largely as an average B-type DNA conformation. However, the 1H and 31P NMR spectra give evidence of considerable conformational heterogeneity at the mismatched nucleotides and their nearest neighbors, which increases with increasing temperature. There is no evidence for a significant population of the syn purine conformation. The imino protons of the mispaired bases G4 and G9 are degenerate, resonate at high field, and exchange readily with solvent. These results indicate that the mispaired bases are only weakly hydrogen-bonded and are only partially stacked into the helix. On raising the temperature, the duplex shows increasing exchange between two or more conformations originating from the mismatch sites. However, these additional conformations maintain their Watson-Crick hydrogen bonding. The increase in chemical exchange is consistent with a quasimelting process for which the G.G sites provide local nuclei. Extensive modeling studies by dynamic annealing have confirmed that the G(anti).G(anti) conformation is favored and that the mispairs are poorly stacked within the helix. The results explain both the poor thermal stability and low hypochromicity of this duplex.  相似文献   

10.
The NMR parameters for the 1,N2-propanodeoxyguanosine (X) opposite deoxyadenosine positioned in the center of the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) X.A 9-mer duplex are pH dependent. A previous paper established protonated X5(syn).A14(anti) pairing in the X.A 9-mer duplex at pH 5.8 [Kouchakdjian, M., Marinelli, E., Gao, X., Johnson, F., Grollman, A., & Patel, D. J. (1989) Biochemistry 28, 5647-5657]; this paper focuses on the pairing alignment at the lesion site at pH 8.9. The observed NOEs between specific exocyclic CH2 protons and both the imino proton of G6 and the sugar H1' protons of C13 and A14 establish that X5 is positioned toward the G6.C13 base pair with the exocyclic ring directed between C13 and A14 on the partner strand. The observed NOE between the H2 proton of A14 and the imino proton of G4, but not G6, establishes that A14 at the lesion site is directed toward the G4.C15 base pair. NOEs are detected between all exocyclic CH2 protons of X5 and the H2 proton of A14, confirming that both X5 and A14 are directed toward the interior of the helix. The X5(anti).A14(anti) alignment at pH 8.9 is accommodated within the helix with retention of Watson-Crick pairing at flanking G4.C15 and G6.C13 base pairs. The energy-minimized conformation of the (G4-X5-G6).(C13-A14-C15) segment at pH 8.9 establishes that X5 and A14 are directed into the helix, partially stack on each other, and are not stabilized by intermolecular hydrogen bonds. The X5 base is partially intercalated between C13 and A14 on the unmodified strand, while A14 is partially intercalated between G4 and X5 on the modified strand. This results in a larger separation between the G4.C15 and G6.C13 base pairs flanking the lesion site in the basic pH conformation of the X.A 9-mer duplex. The midpoint of the transition between the protonated X5(syn).A14(anti) and X5(anti).A14(anti) conformations occurs at pH 7.6, establishing an unusually high pKa for protonation of the A14 ring opposite the X5 exocyclic adduct site. Thus, the interplay between hydrophobic and hydrogen-bonding contributions modulated by pH defines the alignment of 1,N2-propanodeoxyguanosine opposite deoxyadenosine in the interior of DNA helices.  相似文献   

11.
Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12).d(G13-G14-T15- G16-A17-A18-T19- A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG.dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. We have assigned the exchangeable NH1, NH7, and NH2-2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG.dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H2O solution. The observed NOEs derived from the NH7 proton of 8-oxo-7H-dG7 to the H2 and NH2-6 protons of dA18 establish an 8-oxo-7H-dG7(syn).dA 18(anti) alignment at the lesion site in the 8-oxo-7H-dG.dA 12-mer duplex in solution. This alignment, which places the 8-oxo group in the minor groove, was further characterized by an analysis of the NOESY spectrum of the 8-oxo-7H-dG.dA 12-mer duplex in D2O solution. We were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8).d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn).dA(anti) pair between stable Watson-Crick dA6.dT19 and dT8.dA17 base pairs with minimal perturbation of the helix. Thus, both strands of the 8-oxo-7H-dG.dA 12-mer duplex adopt right-handed conformations at and adjacent to the lesion site, the unmodified bases adopt anti glycosidic torsion angles, and the bases are stacked into the helix. The energy-minimized conformation of the central d(A6-oxo-G7-T8).d(A17-A18-T19) segment requires that the 8-oxo-7H-dG7(syn).dA18(anti) alignment be stabilized by two hydrogen bonds from NH7 and O6 of 8-oxo-7H-dG7(syn) to N1 and NH2-6 of dA18(anti), respectively, at the lesion site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Structural features of pyrimidine.pyrimidine mismatches in the interior of oligonucleotide duplexes have been investigated by high resolution two-dimensional proton nuclear magnetic resonance (n.m.r.) spectroscopy. These studies were conducted on the self-complementary d(C-G-C-T-A-G-C-T-T-G-C-G) duplex (designated T.T 12-mer) and the self-complementary d(C-G-C-C-A-G-C-T-C-G-C-G) duplex (designated C.C 12-mer) containing T.T and C.C pairs located at identical positions four base-pairs from either end of the duplex. Proton n.m.r. studies on the T.T 12-mer duplex were undertaken in the neutral pH range, while studies on the C.C 12-mer duplex were recorded at acidic pH. The proton spectra narrowed considerably on lowering the pH below neutrality for the C.C 12-mer duplex. Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) data sets have been recorded on the T.T 12-mer and C.C 12-mer duplexes in high salt H2O and D2O solution. The magnitude of the NOE crosspeaks and the directionality of the NOE connectivities demonstrate that both duplexes are right-handed with all bases, including those at the mismatch site, adopting an anti configuration about the glycosidic bond. The observed base and sugar proton chemical shifts suggest structural similarities for the trinucleotide segments centered about the T.T and C.C mismatches. A NOE is detected between the resolved imino protons of T4 and T9 at the mismatch site, consistent with formation of a stacked "wobble" T4(anti).T9(anti) pair in the T.T 12-mer duplex. A comparison of the imino proton chemical shift and NOE data suggests that the imino-carbonyl hydrogen bonds in the wobble T.T mismatch are weaker than the corresponding imino-carbonyl hydrogen bonds in the wobble G.T mismatch. The 4-amino protons of C4 and C9 at the mismatch site in the C.C 12-mer duplex do not exhibit the pattern of hydrogen-bonded and exposed protons separated by approximately 1.5 parts per million characteristic of cytidine amino protons involved in Watson-Crick G.C pairing. The experimental data are insufficient to differentiate between wobble C(anti).C+(anti) and other pairing possibilities for the mismatch in the C.C 12-mer duplex at acidic pH.  相似文献   

13.
Kretulskie AM  Spratt TE 《Biochemistry》2006,45(11):3740-3746
The mechanism by which purine-purine mispairs are formed and extended was examined with the high-fidelity Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease activity inactivated. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. A decrease in rate associated with a 7-deazapurine substitution would suggest that the nucleotide is in a syn conformation in a Hoogsteen base pair with the opposite base. During mispair formation, the k(pol)/K(d) values for the insertion of dATP opposite A (dATP/A) as well as dATP/G and dGTP/G were decreased greater than 10-fold with the deazapurine in the dNTP. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the syn conformation and the template base in the anti conformation. During mispair extension, the only decrease in k(pol)/K(d) was associated with the G/G base pair in which 7-deazaguanine was in the template strand. These results as well as previous results [McCain et al. (2005) Biochemistry 44, 5647-5659] in which a hydrogen bond was found between the 3-position of guanine at the primer terminus and Arg668 during G/A and G/G mispair extension indicate that the conformation of the purine at the primer terminus is in the anti conformation during mispair extension. These results suggest that purine-purine mispairs are formed via a Hoogsteen geometry in which the dNTP is in the syn conformation and the template is in the anti conformation. During extension, however, the conformation of the primer terminus changes to an anti configuration while the template base may be in either the syn or anti conformations.  相似文献   

14.
We investigated the behaviour of a 15mer DNA duplex, [5'd(CAGAGTCACTGGCTC)3']. [5'd(GAGCCAG)3' + 5'd(GACTCTG)3'] which contained an adenine opposite the gap. Analysis of the NMR data showed the existence of one major species, which was in equilibrium with two minor species. Their relative concentrations varied as a function of pH with a pKa of approximately 4.5. For the major species, the duplex was globally in B conformation with the central adenine stacked in the helix. The two G.C base pairs adjacent to the central adenine were well formed and a gap was present in front of this adenine. For the minor species, major structural perturbations occurred in the centre of the duplex. At neutral pH, the central adenine was involved in a G.A mismatch with G23 adjacent to the gap. Cytosine C7 was then extrahelical and no gap was observed. Under these conditions, the major neutral species corresponded to 70% of the total and the minor species to 30%. At acidic pH, the central adenine of the minor species was protonated and was involved in a G(syn).A+(anti) mismatch. The difference is that C9 is now extrahelical and G22 is implicated in the mispair. Three-dimensional models were built to initiate molecular dynamic simulations, which were in good agreement with the NMR data. Their structural stability in terms of hydrogen bonding and their flexibility are discussed and the biological significance for the interaction with DNA polymerase is evoked.  相似文献   

15.
W N Hunter  T Brown    O Kennard 《Nucleic acids research》1987,15(16):6589-6606
X-ray diffraction techniques have been used to characterise the crystal and molecular structure of the deoxyoligomer d(C-G-C-A-A-A-T-T-C-G-C-G) at 2.5A resolution. The final R factor is 0.19 with the location of 78 solvent molecules. The oligomer crystallises in a B-DNA type conformation with two strands coiled about each other to produce a duplex. This double helix consists of four A.T and six G.C Watson-Crick base pairs and two C.A mispairs. The mismatched base pairs adopt a "wobble" type structure with the cytosine displaced laterally into the major groove, the adenine into the minor groove. We have proposed that the two close contacts observed in the C.A pairing represent two hydrogen bonds one of which results from protonation of adenine. The mispairs are accommodated in the double helix with small adjustments in the conformation of the sugar-phosphate backbone. Details of the backbone conformation, base stacking interactions, thermal parameters and the hydration are now presented and compared with those of the native oligomer d(C-G-C-G-A-A-T-T-C-G-C-G) and with variations of this sequence containing G.T and G.A mispairs.  相似文献   

16.
Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges.   总被引:1,自引:0,他引:1  
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.  相似文献   

17.
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs.  相似文献   

18.
The oligonucleotides d(m5CGGCm5CG), d(CBr8GGCCBr8G) and d(CGCGGC) have been prepared and studied by infrared spectroscopy. The three sequences contain two GC pairs which are out of purine-pyrimidine alternation with the rest of the sequence. From the IR data of the d(m5CGGCm5CG) hexamer, it is shown that all of the dG residues adopt a syn conformation. The marker IR bands for the C3' endo syn conformation are at 1410, 1354, 1320 and 925 cm-1 whereas those for the C2' endo anti conformation at 1420, 1374 and 890 cm-1 are clearly absent. This result implies that the two adjacent guanines of the d(m5CGGCm5CG) sequence are in syn conformation. It is suggested that duplex formation occurs in d(CGCGGC) films and that all of the guanines are in syn conformation. In contrast, the central non-brominated guanine of the d(CBr8GGCCBr8G) hexamer is found in anti conformation, as expected in a Z type structure of the non-alternating region.  相似文献   

19.
Despite major advances in characterizing purine(R)-purine(R), purine(R)-pyrimidine(Y) and pyrimidine(Y)-pyrimidine(Y) mismatches in DNA, there have not been any structural studies on a synthetic DNA duplex containing several different mispairs. Here, using NMR restrained molecular mechanics and dynamics simulations we have structurally characterized a 12 nucleotide long antiparallel DNA duplex with three different mispairs, namely A+-C, G-T and T-C. Our results show that the overall conformation of the antiparallel DNA duplex is B-DNA-like with slight structural distortions at or near the mispairs' sites. All these mispairs are properly stacked with their flanking base pairs. Each mispair is stabilized by two hydrogen bonds and the decreasing order of the hydrogen-bonding interactions is G-T>T-C>A+-C. G-T mispair has smaller configurational space while the structure is slightly bent at A+-C mispair's site. Overall, this study is the first ever structural characterization of a DNA duplex with three different mismatched base pairs and throws light upon the local conformations of the three mispairs present in the DNA duplex.  相似文献   

20.
The efficiency of DNA glycosylases to initiate base excision repair (BER) has been demonstrated to be modulated by the precise sequence context in which the lesion or mismatch is located. In the case of DNA containing an A/G mismatch, in which the recognition and excision of adenine from the mismatch is mediated by the Escherichia coli MutY enzyme, not only does the local sequence context affect the strength of base stacking interactions, but it also modulates the syn/anti conformation around the glycosyl bond of the bases in the mispair. Utilizing prior NMR data to identify DNA sequence contexts that adopt either an anti/anti or a syn/anti configuration at an A/G mismatch, we tested the hypothesis that the initial equilibrium of the mismatched base orientations would modulate the overall efficiency of glycosyl bond scission. By systematically varying the sequence context around a central A/G mismatch within a 30-mer duplex DNA, significant kinetic differences were observed that were consistent with this hypothesis. Since the relative efficiency of the kinetics fell into only two groupings, a NMR study was conducted on a DNA sequence context of unknown syn/anti conformation. These data established that the relative syn/anti conformation did not correlate with the excision efficiency, as well as there being a lack of correlation between kinetics and thermal stability of these DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号