首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.  相似文献   

2.
Crop rotation for portions of east central Illinois and northern Indiana no longer adequately protects corn (Zea mays L.) roots from western corn rootworm, Diabrotica virgifera virgifera LeConte. Seventeen growers in east central Illinois monitored western corn rootworm adults in soybean (Glycine max L.) fields with unbaited Pherocon AM traps during 1996 and 1997. In the following years (1997 and 1998), growers left untreated strips (no insecticide applied) when these fields were planted with corn. Damage to rotated corn by rootworms was more severe in untreated than in treated strips of rotated corn, ranging from minor root scarring to a full node of roots pruned. Densities of western corn rootworms in soybean fields from 1996 were significantly correlated with root injury to rotated corn the following season. Adult densities from 1997 were not significantly correlated with root injury in 1998, due to heavy precipitation throughout the spring of 1998 and extensive larval mortality. Twenty-eight additional growers volunteered in 1998 to monitor rootworm adults in soybean fields with Pherocon AM traps based on recommendations that resulted from our research efforts in 1996 and 1997. In 1999, these 28 fields were rotated to corn, and rootworm larval injury was measured in untreated strips. Based on 1996-1997 and 1998-1999 data, a regression analysis revealed that 27% of the variation in root injury to rotated corn could be explained by adult density in soybeans the previous season. We propose a sampling plan for soybean fields and a threshold for predicting western corn rootworm larval injury to rotated corn.  相似文献   

3.
Studies were conducted in Kansas corn and soybean fields during 1997 to compare various sampling methods, traps, and trap components for capturing three species of adult corn rootworms: western (Diabrotica virgifera virgifera Leconte), southern (D. undecimpunctata howardi Barber), and northern (D. barberi Smith & Lawrence). Lure constituents affected the species of beetle attracted to the trap. Traps with a lure containing 4-methoxycinnamaldehyde attracted more western corn rootworms, those with a lure containing eugenol were more attractive to northern corn rootworms, and those containing trans-cinnamaldehyde were most attractive to southern corn rootworms. Multigard sticky traps caught more beetles than did Pherocon AM sticky traps. In corn, a newly designed lure trap caught more beetles than did sticky traps on most occasions. Also, lure-baited sticky traps caught more beetles than did nonbaited sticky traps. Varying the color of the lure trap bottom did not affect the number caught. In soybeans, the new lure traps captured more beetles than did the nonbaited Multigard or Pherocon AM sticky traps. Results of this study suggest the new lure trap may provide a more accurate assessment of corn rootworm populations than traditional monitoring techniques and may be more esthetically pleasing to growers and consultants.  相似文献   

4.
A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance >99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to >99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2-9 yr with refuges occupying 5-30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).  相似文献   

5.
The cultural practice of rotating corn, Zea mays L., with soybean, Glycine max (L.) Merrill, to manage larval injury by the western corn rootworm, Diabrotica virgifera virgifera LeConte, was used extensively throughout east central Illinois and northern Indiana until the mid-1990s. The effectiveness of this management tactic diminished due to a shift in the ovipositional behavior of the western corn rootworm. The variant western corn rootworm has since spread as far as northwestern Illinois, southern Wisconsin, southern Michigan, and eastern Ohio. The objective of this study was to evaluate the influence of four cropping systems on adult and egg densities of the western corn rootworm and to quantify the level of root injury in rotated corn after each system. The four cropping systems used included: 1) corn; 2) soybean; 3) double-cropped winter wheat, Triticum aestivum L., followed by soybean; and 4) winter wheat. Research trials were conducted near Monmouth (northwestern), DeKalb (northern), and Urbana (east central), IL, during 2003 and 2004. Results indicated variant western corn rootworm adults can be found in all four treatments at each location and consequently no crop was immune to oviposition or root injury by corn rootworm larvae in rotated corn the following season. Adults were found primarily in corn and soybean, whereas egg densities were greatest in corn plots in all three locations in both years of the study. Root injury by larvae was most abundant in corn following corn at all three sites. Of the four systems evaluated, the use of wheat demonstrated the most potential for preventing yield reducing levels of root injury in rotated corn.  相似文献   

6.
Western corn rootworm, Diabrotica virgifera virgifera LeConte, has overcome crop rotation in several areas of the central United States. We expanded a simple model of adult behavior and population genetics to explain how rotation resistance may have developed and to study ways to manage the western corn rootworm in a landscape of corn, soybean, and winter wheat where evolution of resistance may occur. We modeled six alternative management strategies over a 15-yr time horizon, as well as a strategy involving a 2-yr rotation of corn and soybean in 85% of the landscape, to investigate their effectiveness from both a biological and economic perspective. Generally, resistance to crop rotation evolves in fewer than 15 yr, and the rate of evolution increases as the level of rotated landscape (selection pressure) increases. When resistance is recessive, all six alternative strategies were effective at preventing evolution of rotation resistance. The two most successful strategies were the use of transgenic rotated corn in a 2-yr rotation and a 3-yr rotation of corn, soybean, and wheat with unattractive wheat (for oviposition) preceding corn. Results were most sensitive to increases in the initial allele frequency and modifications of the density-dependent survival function. Economically, three alternative strategies were robust solutions to the problem, if technology fees were not too high. Repellant soybean, attractive rotated corn, and transgenic rotated corn, all in 2-yr rotations, were economically valuable approaches. However, even the currently common 2-yr rotation was economical when resistance was recessive and the actual costs of resistance would not be paid until far in the future.  相似文献   

7.
It is hypothesized that the long-term rotation of maize (Zea mays L.) and soybean (Glycine max L.) in east central Illinois has caused a significant change in the ovipositional behavior of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Since the mid 1990s in east central Illinois, western corn rootworm adults have been observed feeding on soybean foliage and also now use soybean fields as egg laying sites. This behavioral adaptation has greatly decreased the effectiveness of rotation as a pest management tactic. By using Pherocon AM and vial traps, we evaluated the influence of maize, soybean, oat stubble (Avena sativa L.), and alfalfa (Medicago sativa L.) on male and female adult western corn rootworm densities from April 1998 through September 2000 near Urbana, IL. Our results indicated that western corn rootworm adults are common inhabitants of maize, soybean, oat stubble, and alfalfa. Trapping efforts with both Pherocon AM (attractive) and vial traps (passive) revealed that initial densities of both male and female western corn rootworm adults were greater in maize. Soon after emergence, densities of females began to decline within maize and increase in other crops (soybean, oat stubble, and alfalfa). Results from this experiment support the hypothesis that variant western corn rootworm females in east central Illinois are colonizing crops other than maize at densities of potential economic importance. Those producers who choose to rotate maize with soybean or alfalfa may remain at risk to economic larval injury to maize roots. Potentially, oat stubble also may support levels of western corn rootworm females resulting in sufficient oviposition to cause economic losses to rotated maize the following season.  相似文献   

8.
Three on-farm sites in Iroquois County, IL, each containing an adjacent 16.2-ha commercial production maize, Zea mays L., and soybean, Glycine max (L.) Merr., field, were monitored for western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), adults from June through September 1999-2001. Mean captures of D. v. virgifera adults as measured with Pherocon AM yellow sticky traps were significantly greater in maize than in soybean. Overall mean numbers of D. v. virgifera adults captured with vial traps were significantly greater in soybean than in maize. Emergence cage data revealed that after 50% emergence of D. v. virgifera adults occurred, peak captures of D. v. virgifera adults occurred in maize as measured with vial and Pherocon AM traps. After maize reached the R2 (blister stage, 10-14 d after silking) stage of development and 90% emergence of D. v. virgifera adults had occurred, peak captures of D. v. virgifera adults were observed in soybean by using vial and Pherocon AM traps. Also, after maize reached the R2 stage of development, numbers of females significantly increased in soybean and decreased in maize. Captures of female D. v. virgifera adults frequently exceeded published economic thresholds in soybean, regardless of trap type used. Estimated survival of variant D. v. virgifera (egg to adult) in these commercial rotated maize fields was 10.7 and 9.4% from 1999 to 2000 and from 2000 to 2001, respectively. This compares with nonvariant D. v. virgifera survival estimates in continuous maize production systems in Iowa of 6.7 and 11% from 1983 to 1984 and from 1984 to 1985, respectively.  相似文献   

9.
Western corn rootworm, Diabrotica virgifera virgifera LeConte, has overcome crop rotation in several areas of the north central United States. The effectiveness of crop rotation for management of corn rootworm has begun to fail in many areas of the midwestern United States, thus new management strategies need to be developed to control rotation-resistant populations. Transgenic corn, Zea mays L., effective against western corn rootworm, may be the most effective new technology for control of this pest in areas with or without populations adapted to crop rotation. We expanded a simulation model of the population dynamics and genetics of the western corn rootworm for a landscape of corn; soybean, Glycine max (L.); and other crops to study the simultaneous development of resistance to both crop rotation and transgenic corn. Results indicate that planting transgenic corn to first-year cornfields is a robust strategy to prevent resistance to both crop rotation and transgenic corn in areas where rotation-resistant populations are currently a problem or may be a problem in the future. In these areas, planting transgenic corn only in continuous cornfields is not an effective strategy to prevent resistance to either trait. In areas without rotation-resistant populations, gene expression of the allele for resistance to transgenic corn, R, is the most important factor affecting the evolution of resistance. If R is recessive, resistance can be delayed longer than 15 yr. If R is dominant, resistance may be difficult to prevent. In a sensitivity analysis, results indicate that density dependence, rotational level in the landscape, and initial allele frequency are the three most important factors affecting the results.  相似文献   

10.
Abstract:  Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, larval damage in maize following soybean was observed in Croatia in 2003 along the edges and within soybean fields which bordered continuous maize fields in previous year. The explanation was that WCR adults moved from the continuous maize to the neighbouring soybean fields to lay eggs. This study was designed to measure how far WCR adults will enter into neighbouring fields to lay eggs. The WCR adult population was monitored in continuous maize fields in 2003 and 2005 by using Pherocon® AM non-baited yellow sticky traps in the middle and on the borders of the maize field and at different distances and directions into neighbouring fields planted by wheat and soybean. Larval presence and root damage ratings (Iowa State University 1–6 ) were recorded at different locations within the maize field in following years. Approximately, the same concentration of WCR adults was recorded along the edges of the maize fields as recorded in the centres of those fields. A significant number of WCR adults was recorded up to a distance of 50 m into neighbouring fields. Regression analysis showed medium negative correlation between distance from previous maize field and root damage in the following year. Findings indicate that WCR egg lying can reach approximately 20 m into fields neighbouring maize fields and that significant root damage caused by WCR larvae in first-year maize following soybean and wheat can happen up to a distance of 20 m into those fields. Most farmers's fields in Croatia are up to approximately 50 m wide. As an edge effect for WCR egg laying can reach approximately 20 m into fields neighbouring maize fields, our research results indicate that it is possible to see WCR larval damage in rotated fields without those WCR's being the variant form.  相似文献   

11.
Abstract:  In 2005 and 2006, transgenic insecticidal maize hybrids (YieldGard Rootworm, MON 863, Cry3Bb1, Vector ZMIR 13L) were evaluated for their ability to limit root injury caused by western corn rootworm ( Diabrotica virgifera virgifera LeConte) larval feeding. Hybrids in each year of the experiment were planted in plots that had been devoted to a trap crop (late-planted maize interplanted with pumpkins) the previous growing season. All maize hybrids were provided by Monsanto Company and the genetic backgrounds remain unknown to the investigators. In 2005, the experiment was conducted in Urbana, Illinois. Urbana is located in east central Illinois, an area of the state in which a variant of the western corn rootworm has overcome the pest management benefits of crop rotation. Variation in root injury was noted across the maize hybrids in 2005 and the level of pruning increased from 20 July to 9 August for most hybrids. In 2006, the experiment was conducted in two locations, Monmouth and Urbana, Illinois. Monmouth is located in north-western Illinois and is within an area of the state in which densities of the variant of the western corn rootworm are lower than in east-central Illinois. In 2006, variation in root protection was again observed across the maize hybrids. Root injury differences among the hybrids were more prominent at the Urbana site. Similar to the previous year, root injury increased from the third week in July to the first week of August at both locations with this increase most noticeable at the Urbana location. We hypothesize that the variant western corn rootworm may be able to inflict more root injury to these transgenic insecticidal maize hybrids than the non-variant population of this species.  相似文献   

12.
We studied management strategies for western corn rootworm, Diabrotica virgifera virgifera LeConte, using transgenic corn, Zea mays L., from both a biological and an economic perspective. In areas with and without populations adapted to a 2-yr rotation of corn and soybean (rotation-resistant), the standard management strategy was to plant 80% of a cornfield (rotated and continuous) to a transgenic cultivar each year. In each area, we also studied dynamic management strategies where the proportion of transgenic corn increased over time in a region. We also analyzed management strategies for a single field that is the first to adopt transgenic corn within a larger unmanaged region. In all areas, increasing the expression of the toxin in the plant increased economic returns. In areas without rotation-resistance, planting 80% transgenic corn in the continuous cornfield each year generated the greatest returns with a medium toxin dose or greater. In areas with alleles for rotation-resistance at low initial levels, a 2-yr rotation of nontransgenic corn and soybean, Glycine max (L.) Merr., may be the most economical strategy if resistance to crop rotation is recessive. If resistance to crop rotation is additive or dominant, planting transgenic corn in the rotated cornfield was the most effective strategy. In areas where rotation-resistance is already a severe problem, planting transgenic corn in the rotated cornfield each year was always the most economical strategy. In some cases the strategies that increased the proportion of transgenic corn in the region over time increased returns compared with the standard strategies. With these strategies the evolution of resistance to crop rotation occurred more rapidly but resistance to transgenic corn was delayed compared with the standard management strategy. In areas not managed by a regional norm, increasing the proportion of transgenic corn and increasing toxin dose in the managed field generally increased returns. In a sensitivity analysis, among the parameters investigated, only density-dependent survival affected the results.  相似文献   

13.
Across a large area of the midwestern United States Corn Belt, the western corn rootworm beetle (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) exhibits behavioral resistance to annual crop rotation. Resistant females exhibit increased locomotor activity and frequently lay eggs in soybean (Glycine max L.) fields, although they also lay eggs in fields of corn (Zea mays L.) and other locations. The goals of this study were (1) to determine whether there were any differences in ovipositional behavior and response to plant cues between individual rotation-resistant and wild-type females in the laboratory and (2) to examine the roles of, and interaction between, host volatiles, diet, and locomotor behavior as they related to oviposition. Because rootworm females lay eggs in the soil, we also examined the influence of host plant roots on behavior. In the first year of the study, rotation-resistant beetles were significantly more likely to lay eggs in the presence of soybean foliage and to feed on soybean leaf discs than wild-type females, but this difference was not observed in the second year. Oviposition by rotation-resistant females was increased in the presence of soybean roots, but soybean herbivory did not affect ovipositional choice. Conversely, ovipositional choice of wild-type females was not affected by the presence or identity of host plant roots encountered, and wild-type females consuming soybean foliage were more likely to lay eggs.  相似文献   

14.
We expanded a simulation model of the population dynamics and genetics of the western corn rootworm for a landscape of corn, soybean, and other crops to study the simultaneous development of resistance to both crop rotation and transgenic corn. Transgenic corn effective against corn rootworm was recently approved in 2003 and may be a very effective new technology for control of western corn rootworm in areas with or without the rotation-resistant variant. In simulations of areas with rotation-resistant populations, planting transgenic corn to only rotated cornfields was a robust strategy to prevent resistance to both traits. In these areas, planting transgenic corn to only continuous fields was not an effective strategy for preventing adaptation to crop rotation or transgenic corn. In areas without rotation-resistant phenotypes, gene expression of the allele for resistance to transgenic corn was the most important factor affecting the development of resistance to transgenic corn. If the allele for resistance to transgenic corn is recessive, resistance can be delayed longer than 15 yr, but if the resistant allele is dominant then resistance usually developed within 15 yr. In a sensitivity analysis, among the parameters investigated, initial allele frequency and density dependence were the two most important factors affecting the evolution of resistance. We compared the results of this simulation model with a more complicated model and results between the two were similar. This indicates that results from a simpler model with a generational time-step can compare favorably with a more complex model with a daily time-step.  相似文献   

15.
Abstract 1 Field studies evaluated plant attractants and analogues as tools to move corn rootworm beetles (Diabrotica spp.) into areas to be treated with toxic baits for population suppression via mass removal/annihilation of reproductive adults. 2 When dispensed from sticky traps in maize, 2‐phenyl‐1‐ethylamine and 2‐phenyl‐1‐ethanol captured more northern corn rootworm, Diabrotica barberi, than did 4‐methoxyphenethanol. Only 2‐phenyl‐1‐ethanol attracted the western corn rootworm, Diabrotica virgifera virgifera, but not until maize matured beyond milk stage. 3 Attraction of D. barberi to the amine, alone or blended with 2‐phenyl‐1‐ethanol, occurred before and after maize flowered but not during intervening silk or blister stages. Attraction recurred during early milk stage at or before 50% emergence of adult female D. barberi or D. v. virgifera, respectively, and before populations declined for the season. 4 Synergistic interaction of 2‐phenyl‐1‐ethylamine with 2‐phenyl‐1‐ethanol in attracting D. barberi females did not occur until maize matured to late milk stage. 5 The amine‐alcohol blend (0.44 point sources m?2) doubled the density of D. barberi but not D. v. virgifera when applied to small plots within mostly milk‐stage or younger maize. Traps without bait within attractant‐treated plots captured more female, but not male, D. barberi than did traps in untreated control plots, hinting that females accounted for most of the observed increase in beetle density. 6 The results suggest that attractants can be used despite phenological limitations to concentrate preovipositional females within field areas and thus to complement a variety of corn rootworm control strategies.  相似文献   

16.
The establishment and survival of western corn rootworm, Diabrotica virgifera virgifera LeConte, was evaluated on transgenic Bacillus thuringiensis Berliner maize, Zea mays L., expressing the mCry3A protein (MIR604) and non-Bt maize with the same genetic background (isoline maize) at different stages of development in 2007 and 2008. Overall, western corn rootworm larval recovery, root damage, and adult emergence were significantly higher on isoline maize compared with MIR604. The number of larvae and adults collected from MIR604 did not significantly differ among egg hatch dates from each maize developmental stage evaluated in either year. In 2007, damage to isoline maize roots was lower than expected and never exceeded 0.24 nodes of damage. In 2008, over 0.60 nodes of damage occurred on isoline maize roots. The mean weight and head capsule width of larvae and adults recovered from MIR604 and isoline maize were generally not significantly different. Results are discussed in relation to insect resistance management of western corn rootworm.  相似文献   

17.
The rotation of maize, Zea mays L., and soybean, Glycine max (L.) Merr., has been the traditional cultural tactic to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in the Corn Belt. The reduced effectiveness of this rotation as a pest management tool in east central Illinois, northern Indiana, and southern Michigan can be explained by the shift in the ovipositional behavior of the new variant of western corn rootworm. The objective of this study was to evaluate the influence of maize, soybean, oat, Avena sativa L., stubble, and alfalfa, Medicago sativa L., on the ovarian development and ovipositional preferences of the variant western corn rootworm. Field research was conducted near Urbana, IL, during 1998-2000. Gravid females were present throughout the season in all crops, and due to the prolonged period in which western corn rootworm females can lay eggs, none of the crops were immune from oviposition. Results indicated that the western corn rootworm variant oviposits in maize, soybean, oat stubble, and alfalfa In 1998 and 1999, maize was the preferred oviposition site among crops; however, in 2000, maize, soybean, and oat stubble treatments had similar densities of western corn rootworm eggs. Lack of oviposition preference of the western corn rootworm variant demonstrated in this experiment represents a reasonable explanation of why the effectiveness of the rotation strategy to control western corn rootworm has diminished.  相似文献   

18.
Diabrotica barberi Smith & Lawrence and Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) are serious pests of maize, Zea mays L. To reduce the amount of toxicants released into the environment, the Agricultural Research Service implemented a 5-yr (1997-2001) areawide pest management program in five geographic locations, including one in South Dakota. The objective was to use integrated pest management tactics to suppress adult Diabrotica populations over a broad geographic area by using aerially applied semiochemical-baited insecticides. Suppressed populations theoretically should reduce oviposition, limit larval feeding damage to maize roots, and result in fewer beetles emerging in subsequent years. We used emergence cages, sticky traps, and CRW lure traps to monitor adult D. barberi and D. v. virgifera populations. We sampled for Diabrotica eggs, and we determined damage to maize roots. We sampled in several maize fields (control) located near the areawide site. The baited insecticides were effective in reducing adult populations 1 and 2 wk after application, and most remained low for the duration of the maize growing season. Fewer beetles were captured in both sticky and lure traps in the areawide site than in the control site. With a few exceptions, egg counts, adult emergence, and maize root damage were similar between the areawide and control sites; however, maize roots had greater fresh weight in the control site. Although not all goals were accomplished, when considering the amount of toxicant released into the environment, using semiochemical-baited insecticides to suppress adult pest Diabrotica populations seems to be an effective areawide management tool.  相似文献   

19.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is an important pest of corn, Zea mays L., causing yield losses from root damage, plant lodging, and silk feeding. Because little is known about its impact on sweet corn, we conducted research to evaluate the combined effects of insecticide, planting date, and cultivar on root damage, plant lodging, and yield in central New York sweet corn. We also examined the influence of planting date and cultivar on the emergence of adult western corn rootworms. The research was conducted in 1994 and again in 1995 by using a split-split plot experimental design with insecticide as main plot, planting date as subplot, and cultivar as sub-subplot. The effect of cultivar on beetle emergence was not significant. Root damage was not correlated with adult emergence in 1994 but was positively correlated in 1995. In 1994, there was no interaction of the main factors, and all factors had a significant impact on root damage. In 1995 there was an interaction of insecticide and planting date, and of cultivar and planting date. Generally, root damage was reduced by insecticide and later planting. Plant lodging was affected by the interaction of insecticide and planting date, and the interaction of cultivar and planting date, for both years of the study. As with root damage, lodging was reduced with insecticide treatment and later planting but also was dependent on cultivar. In 1994 and especially in 1995, silk clipping by adult western corn rootworms precluded much inference about how yield was influenced by larval feeding damage on roots. The number of emerging western corn rootworm adults was lower and later in later plantings.  相似文献   

20.
Mortality of the western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae due to feeding on maize, Zea mays L., expressing Bacillus thuringiensis Berliner (Bt) was evaluated in five Missouri sites in 2007, 2008, and 2009. Specifically, eCry3.1Ab (5307), mCry3A (MIR604), and eCry3.1Ab plus mCry3A proteins relative to survivorship on maize with the same genetic background without these genes (isoline maize) was evaluated. An average of 890.8 +/- 152.3 beetles emerged from isoline plots, whereas average beetle emergence from 5307, MIR604, and 5307 x MIR604 was 1.9 +/- 0.6, 19.3 +/- 6.3, and 0.8 +/- 0.3, respectively, when averaged across 22 replications in five environments. Overall, 66, 50, 61, and 51% of beetles recovered from 5307, MIR604, 5307 x MIR604, and isoline maize, respectively, were female, and there was no significant difference between the number of male and female beetles that emerged from any of these treatments. Mortality due to 5307, MIR604, and 5307 x MIR604 was 99.79, 97.83, and 99.91%, respectively. There was an 8.0-d delay in time to 50% beetle emergence from 5307 compared with isoline maize, which was significantly later than to the other three maize lines. The average delay to 50% emergence from MIR604 and 5307 x MIR604 averaged 4.1 and 4.6 d, respectively later than 50% emergence from isoline maize. Female beetles had a significant delay in time to 50% emergence compared with male beetles from all treatments with the exception of 5307 x MIR604. Data are discussed in terms of insect resistance management in relation to other control measures for western corn rootworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号