首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to nitrogen–oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen–oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium–oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.  相似文献   

2.
In acute experiments on cats, we demonstrated that the relative number of neurons of the caudate nucleus responding to stimulation of the motor cortex with latencies shorter than 8.0 msec significantly decreased, as compared with the control, after destruction of the nigro-striatal dopaminergic system caused by a series of injections of the neurotoxin MPTP. Within 1.5 months, the number of these cells gradually recovered. We conclude that in the norm dopamine exerts an inhibitory effect on glutamatergic cortico-striatal impulsation. We hypothesize that the blockade of transmission through cortico-striatal synaptic connections under conditions of dopamine deficiency is realized due to the toxic effect of glutamate released in excessive amounts on the corresponding receptors in the above synapses. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 287–291, July–August, 2006.  相似文献   

3.
Exposing brain slices to reduced oxygen tensions or impairing their ability to utilize oxygen with KCN decreases acetylcholine (ACh) but increases dopamine (DA) and glutamate in the medium at the end of a release incubation. To determine if these changes are due to alterations in the presynaptic terminals, release from isolated nerve endings (i.e. synaptosomes) was determined during histotoxic hypoxia (KCN). KCN reduced potassium-stimulated synaptosomal ACh release and increased dopamine and glutamate release. Since several lines of evidence suggest that altered calcium homeostasis underlies these changes in release, the effects of reducing medium calcium concentrations from 2.3 to 0.1-mM were determined. In low calcium medium, KCN still increased dopamine and glutamate release, but had no effect on ACh release. Hypoxia increased cytosolic-free calcium in both the normal and low calcium medium, although the elevation was less in the low calcium medium. Thus, the effects of histotoxic hypoxia on cytosolic free calcium concentration paralleled those on glutamate and dopamine release. Reducing the glucose concentration of the medium also increased cytosolic-free calcium. The data are consistent with the hypothesis that hypoxia and hypoglycemia increase cytosolic-free calcium, which stimulates the release of dopamine and glutamate, whose excessive release may lead to subsequent cellular damage postsynaptically.Abbreviations (cps) counts per second - (FAM) fura-2 acetoxymethylester - (ACh) acetylcholine - (Cai) cytosolic free calcium concentration - (DMSO) dimethylsulphoxide - (DA) dopamine - (TES) N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - (Rmin) the ratio of the fluorescence of fura at 510 nm after excitation at 340 nm to that after excitation at 380 nm in the absence of calcium - (Rmax) or to that in the presence of saturating calcium - (SNK) Student-Newman-Keuls  相似文献   

4.
Summary.  Degeneration of dopaminergic nigrostriatal neurons is a primary cause of Parkinson's disease. Oxidative stress, excitotoxicity and mitochondrial failure are thought to be key mechanisms resposible for degeneration of dopaminergic cells. We found that the selective antagonist of the mGluR5 subtype MPEP in a dose of 5 mg/kg diminshed basal and veratridine (100 μM)-stimulated dopamine release in rat striatum in an in vivo model of microdialysis. In contrast, MPEP given intrastriatally in a high concentration (500 μM) enhanced the striatal extracellular concentration of dopamine. DCG-IV (100 μM), a non-selective agonist of group II mGluRs, inhibited the veratridine-stimulated striatal dopamine release. In an animal model of neuroxicity in vivo, methamphetamine (5 × 10 mg/kg, injected at 2 h intervals) produced deficits in the striatal content of dopamine and its metabolites DOPAC and HVA 72 h after the treatment. MPEP (5 × 5 mg/kg) given before each methamphetamine injection reversed the decrease in the striatal content of dopamine and diminished the methamphetamine-induced dopamine outflow from nigrostriatal terminals. It is concluded that the MPEP-produced blockade of mGluR5 situated on dopaminergic cells, or the suppression of glutamate release in the subthalamic nucleus or substantia nigra pars reticulata may directly and indirectly cause a decrease in striatal dopamine release. However, inhibitory effect of DCG-IV on dopamine release can be induced by attenuation of excitatory input from corticostriatal terminals by activation of mGluR2/3. Regulation of dopamine carriers by MPEP, an antagonist of group I mGluRs may be responsible for the reversal of toxicity induced by methamphetamine. Received July 7, 2001 Accepted August 6, 2001 Published online September 10, 2002  相似文献   

5.
(1) Huperzine A, a promising therapeutic agent for Alzheimer’s disease (AD), was tested for its effects on cholinergic and monoaminergic dysfunction induced by injecting β-amyloid peptide-(1–40) into nucleus basalis magnocellularis of the rat. (2) Bilateral injection of 10 μg β-amyloid peptide-(1–40) into nucleus basalis magnocellularis produced local deposits of amyloid plaque and functional abnormalities detected by microdialysis. In medial prefrontal cortex, reductions in the basal levels and stimulated release of acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine were observed. However, oral huperzine A (0.18 mg/kg, once daily for 21 consecutive days) markedly reduced morphologic abnormalities at the injection site in rats infused with β-amyloid peptide-(1–40). Likewise, this treatment ameliorated the β-amyloid peptide-(1–40)-induced deficits in extracellular acetylcholine, dopamine, and norepinephrine (though not 5-hydroxytryptamine) in medial prefrontal cortex, and lessened the reduction in nicotine or methoctramine-stimulated release of acetylcholine and K+-evoked releases of acetylcholine and dopamine. (3) The present results provide the first direct evidence that huperzine A acts to oppose neurotoxic effects of β-amyloid peptide on cholinergic, dopaminergic, and noradrenergic systems of the rat forebrain.  相似文献   

6.
 To gain a better understanding of the elementary unit of synaptic communication between hippocampal neurons, we simulated the release of glutamate from a single pre-synaptic vesicle and its diffusion into the synaptic cleft. Diffusion of glutamate was simulated by a Brownian model based on Langevin equations. The model was implemented for parallel computer simulation and tested under different conditions of glutamate release and different geometrical and physical characteristics of the synaptic cleft. All the tested parameters have shown to be important for the synaptic responses. The results show that the synaptic transmission efficacy is influenced by many different geometrical parameters and, as a consequence, the quality of the excitatory post-synaptic response can be very different in the same synapse. The variability in the quantal response found by several authors can also be explained by physical parameters other than by variations in the quantal content of the synaptic vesicle as proposed by these authors. Received: 6 October 1999 / Accepted: 29 February 2000  相似文献   

7.
α-Synuclein and dopamine metabolism   总被引:4,自引:0,他引:4  
Yu S  Uéda K  Chan P 《Molecular neurobiology》2005,31(1-3):243-254
α-Synuclein (α-Syn), a 140-amino-acid protein richly expressed in presynaptic terminals in the central nervous system, has been shown to play a central role in the pathogenesis of Parkinson’s disease. Although the normal functions of α-Syn remain elusive, accumulating evidence shows that the molecule is involved in multiple steps related to dopamine metabolism, including dopamine synthesis, storage, release, and uptake. The regulatory effect of α-Syn on dopamine metabolism is likely to tone down the amount of cytoplasmic dopamine at nerve terminals, thereby limiting its conversion to highly reactive oxidative molecules. Formation of α-Syn protofibrils triggered by factors such as gene mutations and environmental toxins can make the molecule lose its normal functions, leading to disrupted homeostasis of dopamine metabolism, increased cytoplasmic dopamine levels, and enhanced oxidative stress in dopaminergic neurons. The enhanced oxidative stress will, in turn, exacerbate the formation of α-Syn protofibrils and drive the neurons into a vicious cycle, which will finally result in the selective degeneration of the dopaminergic neurons associated with Parkinson’s disease.  相似文献   

8.
Summary It is known that estrogen can protect neurons from excitotoxicity. Since isoflavones possess estrogen-like activity, it is of interest to determine whether isoflavones can also protect neurons from glutamate-induced neuronal injury. Morphological observation and lactate dehydrogenase (LDH) release assay were used to estimate the cellular damage. It is surprising that, contrary to estrogen, isoflavones, specifically genistein and daidzein, are toxic to primary neuronal culture at high concentration. Treatment of neurons with 50 μM genistein and daidzein for 24 h increased LDH release by 90% and 67%, respectively, indicating a significant cellular damage. Under the same conditions, estrogen such as 17β-estradiol did not show any effect on primary culture of brain cells. At 100 μM, both genistein and daidzein increased LDH release by 2.6- and 3-fold, respectively with a 30-min incubation. Furthermore, both genistein and daidzein at 50 μM increased the intracellular calcium level, [Ca2+]i, significantly. To determine their mode of action, genistein and daidzein were tested on glutamate and GABAA receptor binding. Both genistein and daidzein were found to have little effect on glutamate receptor binding, while the binding of [3H]muscimol to GABAA receptors was markedly inhibited. However, 17β-estradiol did not affect GABAA receptor binding suggesting that the toxic effect of genistein and daidzein could be due to their inhibition of the GABAA receptor resulting in further enhancement of excitation by glutamate and leading to cellular damage. Ying Jin, Heng Wu contributed equally to this article.  相似文献   

9.
Previous microdialysis studies performed in rats have revealed a decrease of striatal dopamine and glutamate induced by nitrogen narcosis. We sought to establish the hypothetical role of the glutamatergic corticostriatal pathway because of the glutamate deficiency which occurs in the basal ganglia in this hyperbaric syndrome. Retrodialysis with 1 mM of Saclofen and 100 mM of KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of glutamate by 95.2% and no changes in dopamine levels. Under 3 MPa of nitrogen and with the infusion, the rate of striatal glutamate decreased by 51.3%, to a greater extent than under pressurised nitrogen alone (−23.8%). The rate of dopamine decreased, which also occurred under pressurised nitrogen (−36.9 and −31.4%, respectively). In conclusion, the function of the corticostriatal pathway is affected by nitrogen under pressure. This suggests that the nitrogen-induced break point seems to be located at the glutamatergic striatopetal neurons.  相似文献   

10.
In inflammatory, infectious, ischemic, and neurodegenerative pathologies of th central nervous system (CNS) glia become “activated” by inflammatory mediators, and express new proteins such as the inducible isoform of nitric oxide synthase (iNOS). Although these activated glia have beneficial roles, in vitro they potently kill cocultured neurons, and there is increasing evidence that they contribute to pathology in vivo. Nitric oxide (NO) from iNOS appears to be a key mediator of such glial-induced neuronal death. The high sensitivity of neurons to NO is partly due to NO causing inhibition of respiration, rapid glutamate release from both astrocytes and neurons, and subsequent excitotoxic death of the neurons. NO is a potent inhibitor of mitochondrial respiration, due to reversible binding of NO to cytochrome oxidase in competition with oxygen, resulting in inhibition of energy production and sensitization to hypoxia. Activated astrocytes or microglia cause a potent inhibition of respiration in cocultured neurons due to glial NO inhibiting cytochrome oxidase within the neurons, resulting in ATP depletion and glutamate release. In some conditions, glutamate-induced neuronal death can itself be mediated by N-methyl-d-aspartate (NMDA)-receptor activation of the neuronal isoform of NO synthase (nNOS) causing mitochondrial damage. In addition NO can be converted to a number of reactive derivatives such as peroxynitrite, NO2, N2O3, and S-nitrosothiols that can kill cells in part by inhibiting mitochondrial respiration or activation of mitochondrial permeability transition, triggering neuronal apoptosis or necrosis.  相似文献   

11.
There are two kinds of neurotransmissions that occur in brain. One is neuron to neuron at synapses, and the other is neuron to glia via extracellular fluid (ECF), both of which are important for maintenance of proper neuronal functioning. For neuron to neuron communications, several potent amino acid neurotransmitters are used within the confines of synaptic space. However, their presence at elevated concentrations in extra-synaptic space could be detrimental to well organized neuronal functioning. The significance of the synthesis and release of N-acetylaspartylglutamate (NAAG) by neurons has long been a puzzle since glutamate (Glu) itself is the “key” that can interact with all Glu receptors on membranes of all cells. Nonetheless, neurons synthesize this acetylated dipeptide, which cannot be catabolized by neurons, and release it to ECF where its specific physiological target is the Glu metabotropic receptor 3 on the surface of astrocytes. Since Glu is excitotoxic at elevated concentrations, it is proposed that formation and release of NAAG by neurons allows large quantities of Glu to be transported in ECF without the risk of injurious excitotoxic effects. The metabolic mechanism used by neurons is a key–lock system to detoxify Glu during its intercellular transit. This is accomplished by first synthesizing N-acetylaspartate (NAA), and then joining this molecule via a peptide bond to Glu. In this paper, a hypothesis is presented that neurons synthesize a variety of relatively nontoxic peptides and peptide derivatives, including NAA, NAAG, homocarnosine (γ-aminobutyrylhistidine) and carnosine (β-alanylhistidine) from potent excitatory and inhibitory amino acids for the purpose of releasing them to ECF to function as cell-specific neuron-to-glia neurotransmitters.  相似文献   

12.
Anaplerosis, or de novo formation of intermediates of the tricarboxylic acid (TCA) cycle, compensates for losses of TCA cycle intermediates, especially α-ketoglutarate, from brain cells. Loss of α-ketoglutarate occurs through release of glutamate and GABA from neurons and through export of glutamine from glia, because these amino acids are α-ketoglutarate derivatives. Anaplerosis in the brain may involve four different carboxylating enzymes: malic enzyme, phosphoenopyruvate carboxykinase (PEPCK), propionyl-CoA carboxylase, and pyruvate carboxylase. Anaplerotic carboxylation was for many years thought to occur only in glia through pyruvate carboxylase; therefore, loss of transmitter glutamate and GABA from neurons was thought to be compensated by uptake of glutamine from glia. Recently, however, anaplerotic pyruvate carboxylation was demonstrated in glutamatergic neurons, meaning that these neurons to some extent can maintain transmitter synthesis independently of glutamine. Malic enzyme, which may carboxylate pyruvate, was recently detected in neurons. The available data suggest that neuronal and glial pyruvate carboxylation could operate at as much as 30% and 40–60% of the TCA cycle rate, respectively. Cerebral carboxylation reactions are probably balanced by decarboxylation reactions, because cerebral CO2 formation equals O2 consumption. The finding of pyruvate carboxylation in neurons entails a major revision of the concept of the glutamine cycle.  相似文献   

13.
Osmotic stimulation activates both estivated and inactivated specimens of Helix pomatia and increases their central arousal. High-pressure liquid chromatography has shown that, during activation, the level of both serotonin and dopamine decreases in the central nervous system (CNS) but increases in the foot and heart, organs that are involved in the eversion of the body. In isolated CNS from activated animals, the firing frequency of the heart-modulator serotonergic (RPas) neurons is significantly higher than that in the CNS of estivated or inactivated animals. These neurons innervate both the heart and the anterior aorta. In semi-intact preparations, distilled water (an osmotic stimulus) applied to the mantle collar increases their firing frequency, whereas tactile stimulation evokes their inhibition. Extracellularly applied monoamines mimic the effect of peripheral stimuli: serotonin (0.1–10 μM) increases the activity of the RPas neurons, whereas dopamine (0.1–10 μM) inhibits their activity. Tyrosine-hydroxylase immunocytochemistry and retrograde neurobiotin tracing have revealed similar bipolar receptor cells in the mantle collar and tail, organs that are exposed to environmental stimuli in estivated animals. Serotonin immunocytochemistry carried out on the same tissues does not visualize receptor cells but labels a dense network of fibers that appear to innervate neurobiotin-labeled receptor cells. The combination of neurobiotin-labeling of RPas neurons and immunolabeling suggests that RPas neurons receive direct dopaminergic inputs from receptor cells and serotonergic inputs from central serotonergic neurons, indicating that central serotonergic neurons are interconnected. Thus, the RPas neurons may belong to neuronal elements of the arousal system. This work was supported by Hungarian OTKA grants T037389, T046580, T037505, and K63451.  相似文献   

14.
Abstract: Intrastriatal injection of the glutamate agonist kainic acid (KA) in rats has been used to produce an animal model to investigate the mechanism of acetylcholine and GABA cell death associated with Huntington's disease. In the present study, the time course of low (10−5 M ) and high (5 × 10−3 M ) concentrations of KA on striatal dopamine and serotonin release was studied in freely moving rats by using in vivo voltammetry. The response to low concentrations of KA varied between animals, either increasing dopamine release during the injection or increasing dopamine and serotonin after the injection for an extended time, suggesting that 10−5 KA is near the threshold for KA toxicity in the striatum in rats. High concentrations of KA suppressed dopamine release during injection, with both dopamine and serotonin release increasing and remaining elevated for 1–4 and 7–21 days, respectively. KA-induced changes were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione and bicuculline increased the release of dopamine but not serotonin. These findings suggest that KA-induced changes in dopamine release resulted from a disinhibition of dopamine neurons due to KA-mediated toxicity of striatal GABA neurons. An alternate possibility is that the change in dopamine and serotonin release may have arisen from a functional modification or degeneration of presynaptic terminals.  相似文献   

15.
The extracellular concentration of glutamate is highly regulated due to its excitotoxic nature. Failure of glutamate uptake or reversed activation of its transporters contributes to neurodegeneration related to some pathological conditions. We have compared the neurotoxicity of the substrate glutamate uptake inhibitor, l-trans-pyrrolidine-2,4-dicarboxylate (PDC), which promotes glutamate release by heteroexchange, with that of DL-threo-beta-benzyloxyaspartate (DL-TBOA), a non-substrate inhibitor, in cerebellar granule cell cultures. PDC substantially increases the extracellular concentration of glutamate during 30 min exposure and causes neuronal death at high concentrations, while DL-TBOA neurotoxicity is only observed after long-term exposure (8–24 h). During mitochondrial inhibition by 3-nitropropionic acid (3-NP), PDC-induced neuronal death is facilitated, but not that of DL-TBOA. In cultures containing a higher population of astrocytes DL-TBOA-induced increase in glutamate levels is more pronounced, but neuronal death is only triggered in the presence of 3-NP. Results suggest that cerebellar granule neurons are more vulnerable to acute transport-mediated glutamate release than to uptake blockade, which correlates with the extracellular excitatory amino acids levels.  相似文献   

16.
Mora G  Tapia R 《Neurochemical research》2005,30(12):1557-1565
We have previously shown that microdialysis perfusion of the K+ channel blocker 4-aminopyridine (4-AP) in rat hippocampus induces convulsions and neurodegeneration, due to the stimulation of glutamate release from synaptic terminals. Retigabine is an opener of the KCNQ2/Q3-type K+ channel that possesses antiepileptic action and may be neuroprotective, and we have therefore studied its effect on the hyperexcitation, the neuronal damage and the changes in extracellular glutamate induced by 4-AP. Retigabine and 4-AP were co-administered by microdialysis in the hippocampus of anesthetized rats, with simultaneous recording of the EEG, and the extracellular concentration of glutamate was measured in the microdialysis fractions. In 70–80% of the rats tested retigabine reduced the 4-AP-induced stimulation of glutamate release and prevented the neuronal damage observed at 24 h in the CA1 hippocampal region. However, retigabine did not block the EEG epileptic discharges and their duration was reduced in only 20–25% of the tested animals. We conclude that the neuroprotective action of retigabine is probably due to the blockade of the 4-AP-induced stimulation of glutamate release. This inhibition, however, was not sufficient to block the epileptic activity. Special issue dedicated to Dr. Simo S. Oja  相似文献   

17.
Summary. The nigrostriatal and mesolimbic systems of the rat have been re-constructed using the organotypic culture model, whereby neonatal brain tissue is grown in vitro for approximately one month. The nigrostriatal cultures consisted of tissue from the substantia nigra, dorsal striatum and frontoparietal cortex; while the mesolimbic cultures included the ventral tegmental area, ventral striatum and cingulate cortex. The cultures were grown at 35°C in normal atmosphere, using a tube-roller device placed in a cell incubator and changing the medium every 3–4 days. The in vitro development was evaluated with an inverted microscope equipped with a variable relief contrast function. Samples were taken directly from the medium in the culture tube and analysed for several amino acids with HPLC. After a month the cultures were fixed and processed for immunohistochemistry. High levels of glutamate and aspartate were observed every time the medium was changed, but the levels rapidly decreased reaching a steady state after approximately 24 h. A decrease in the levels was also observed along development, reaching stable values (∼2 μM and ∼0.12 μM for glutamate and aspartate, respectively) at approximately two weeks, but only when the cultures showed an apparently healthy development. The levels were approximately 10 times higher in deteriorating or apparently damaged cultures. Glutamine levels were in the mM range and remained stable along the entire experiment. No differences were observed among nigrostriatal and mesolimbic cultures. Immunohistochemistry confirmed the impressions obtained from microscopic and biochemical analysis along the in vitro development, revealing apparently healthy neuronal systems with characteristics similar to those observed in vivo, when tyrosine hydroxylase and nitric oxide synthase, markers for dopamine and nitric oxide containing neurons, respectively, were analysed. In the substantia nigra, nitric oxide synthase-positive networks surrounded tyrosine hydroxylase-positive neurons, while in the striatum nitric oxide synthase dendrites were surrounded by tyrosine hydroxylase-positive nerve terminals, suggesting a reciprocal interaction among dopamine and nitric oxide containing neurons. Thus, the organotypic model appears to capture many of the neurochemical and morphological features seen in vivo, providing a valuable model for studying in detail the neurocircuitries of the brain. Received August 31, 1999 Accepted September 20, 1999  相似文献   

18.
In chronic behavioral experiments on rats with a unilateral deficiency of mesencephalo-striatal dopamine, we studied the effect of the blocker of M-cholinoreceptors atropine on the rotational motor activity induced by systemic injections of dopamine agonists exerting direct (apomorphine) and indirect (amphetamine) actions. We found that premedication with atropine increased significantly the intensity of the rotational movements induced by both apomorphine and amphetamine. We conclude that the mesencephalo-striatal dopaminergic system exerts inhibitory effects on cholinergic neurons of the neostriatum. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 459–462, September–December, 2005.  相似文献   

19.
Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c- jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by α-methyl- dl - p -tyrosine methyl ester (α-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by α-MT, whereas α-MT and c- jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.  相似文献   

20.
In acute experiments on cats and rats, we demonstrated that the relative number of neostriatal neurons responding to stimulation of the motor cortex with latencies below 8.0 msec significantly decreased after functional destruction of the nigro-striatal dopaminergic system caused by injections of reserpine. Despite the fact that the level of dopamine (DA) in the neostriatum returned to the initial value 24 h after injection of the above neuroleptic, cortico-striatal impulsation recovered slowly, and the number of short-latency corticofugal reactions attained a near-control value only in one month. The data obtained confirm our earlier hypothesis on the toxic effect of excessive amounts of glutamate (which is observed under conditions of the DA deficiency) on receptors of this neurotransmitter. We conclude that, under normal conditions, DA exerts an inhibitory/protective effect on transmission of impulsation through direct cortico-striatal connections influencing D2 receptors localized on cortico-striatal glutamatergic efferents. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 47–51, January–February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号