共查询到20条相似文献,搜索用时 15 毫秒
1.
The construction and characterization of a novel, thermostable, peptide ligase are described. Three amino acid substitutions were introduced into the secreted bacterial protease Streptomyces griseus protease B (SGPB). Mutations were chosen on the basis of two separate observations: (i) that a single substitution of the nucleophilic serine (S195A) created an enzyme with significant peptide-ligation activity, albeit greatly reduced stability [(2000) Chem. Biol. 7, 163], and (ii) that a pair of substitutions in the substrate-binding pocket (T213L and F228H) greatly increased the thermostability of the wild-type enzyme [(1996) J. Mol. Biol. 257, 233]. The triple mutant, named streptoligase, was found to catalyze peptide ligation (aminolysis of both a thiobenzyl ester and a p-nitroanilide-activated peptide) efficiently in nondenaturing and denaturing conditions including SDS (0.5% w/v) and guanidine hydrochloride (4.0 M). Moreover, streptoligase exhibited a half-live for unfolding of 16.3 min at 55 degrees C in the absence of stabilizing substrates. The fraction of the streptoligase-catalyzed reaction that gave coupled product with the acceptor peptide FAASR-NH(2) was greater for the p-nitroanilide donor (Sc-AAPF-pNA) than for the benzyl thioester substrate (Sc-AAPF-SBn). These observations are consistent with ligation proceeding through an acyl-enzyme intermediate involving histidine-57. In the case of the thioester donor the triple mutant promotes the direct attack of water on the thioester carbonyl carbon, in addition to hydrolysis occurring at the stage of the acyl-enzyme intermediate. The strategy of multiple point mutations outlined in this study may provide a general means of converting enzymes with chymotrypsin-like protein folds into peptide ligases. 相似文献
2.
Wang Z Gu C Colby T Shindo T Balamurugan R Waldmann H Kaiser M van der Hoorn RA 《Nature chemical biology》2008,4(9):557-563
New activity-based probes are essential for expanding studies on the hundreds of serine and cysteine proteases encoded by the genome of Arabidopsis thaliana. To monitor protease activities in plant extracts, we generated biotinylated peptides containing a beta-lactone reactive group. These probes cause strong labeling in leaf proteomes. Unexpectedly, labeling was detected at the N terminus of PsbP, nonproteolytic protein of photosystem II. Inhibitor studies and reverse genetics led to the discovery that this unusual modification is mediated by a single plant-specific, papain-like protease called RD21. In cellular extracts, RD21 accepts both beta-lactone probes and peptides as donor molecules and ligates them, probably through a thioester intermediate, to unmodified N termini of acceptor proteins. 相似文献
3.
Mireille Hervé Andreja Kovač Cécile Cardoso Delphine Patin Boris Brus Hélène Barreteau Dominique Mengin-Lecreulx Stanislav Gobec Didier Blanot 《Biochimie》2013
Murein peptide ligase (Mpl) is an enzyme found in Gram-negative bacteria. It catalyses the addition of tripeptide l-Ala-γ-d-Glu-meso-diaminopimelate to nucleotide precursor UDP-N-acetylmuramic acid during the recycling of peptidoglycan. Although not essential, this enzyme represents an interesting target for antibacterial compounds through the synthesis of alternate substrates whose incorporation into peptidoglycan might be deleterious for the bacterial cell. Therefore, we have synthesised 10 tripeptides l-Ala-γ-d-Glu-Xaa in which Xaa represents amino acids different from diaminopimelic acid. Tripeptide with Xaa = ε-d-Lys proved to be an excellent substrate of Escherichia coli Mpl in vitro. Tripeptides with Xaa = p-amino- or p-nitro-l-phenylalanine were poor substrates, while tripeptides with Xaa = d- or l-2-aminopimelate, dl-2-aminoheptanoic acid, l-Glu, l-norleucine, l-norvaline, l-2-aminobutyric acid or l-Ala were not substrates at all. Although a good Mpl substrate, the d-Lys-containing tripeptide was devoid of antibacterial activity against E. coli, presumably owing to poor uptake. 相似文献
4.
5.
Lee KA Hammerle LP Andrews PS Stokes MP Mustelin T Silva JC Black RA Doedens JR 《The Journal of biological chemistry》2011,286(48):41530-41538
Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His(6)-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology. 相似文献
6.
The Ubr1-like canonical N-recognins, widely conserved ubiquitin ligases in eukaryotes, play a role in the N-end rule pathway-mediated degradation of substrates harboring basic (type-1) or bulky hydrophobic (type-2) amino acids at the N-terminus. In this study, the roles of conserved domains were studied in the Schizosaccharomyces pombe Ubr11 protein. Mutations in the UBR box and the autoinhibitory domain blocked degradation of both type-1 and type-2 substrates, expression of peptide transporter genes, and the uptake of oligopeptides. An N-domain mutant was normal for the type-1-related function, but nevertheless failed to express peptide transporters. These data suggest the importance of the type-2-related activity of Ubr11 for its in vivo function. 相似文献
7.
8.
3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from
cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic
interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase
activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase
mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect
to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity
during cell culture growth.
Received: 23 September 1996 / Accepted: 28 November 1996 相似文献
9.
K Tsukada 《Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme》1983,28(4):313-317
10.
Kirisako T Kamei K Murata S Kato M Fukumoto H Kanie M Sano S Tokunaga F Tanaka K Iwai K 《The EMBO journal》2006,25(20):4877-4887
The ubiquitin system plays important roles in the regulation of numerous cellular processes by conjugating ubiquitin to target proteins. In most cases, conjugation of polyubiquitin to target proteins regulates their function. In the polyubiquitin chains reported to date, ubiquitin monomers are linked via isopeptide bonds between an internal Lys and a C-terminal Gly. Here, we report that a protein complex consisting of two RING finger proteins, HOIL-1L and HOIP, exhibits ubiquitin polymerization activity by recognizing ubiquitin moieties of proteins. The polyubiquitin chain generated by the complex is not formed by Lys linkages, but by linkages between the C- and N-termini of ubiquitin, indicating that the ligase complex possesses a unique feature to assemble a novel head-to-tail linear polyubiquitin chain. Moreover, the complex regulates the stability of Ub-GFP (a GFP fusion protein with an N-terminal ubiquitin). The linear polyubiquitin chain generated post-translationally may function as a new modulator of proteins. 相似文献
11.
12.
13.
Coleman JP Hudson LL McKnight SL Farrow JM Calfee MW Lindsey CA Pesci EC 《Journal of bacteriology》2008,190(4):1247-1255
Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa. 相似文献
14.
15.
Boutell C Cuchet-Lourenço D Vanni E Orr A Glass M McFarlane S Everett RD 《PLoS pathogens》2011,7(9):e1002245
Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection. 相似文献
16.
Das D Hervé M Feuerhelm J Farr CL Chiu HJ Elsliger MA Knuth MW Klock HE Miller MD Godzik A Lesley SA Deacon AM Mengin-Lecreulx D Wilson IA 《PloS one》2011,6(3):e17624
Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships. 相似文献
17.
《Cell cycle (Georgetown, Tex.)》2013,12(21):3636-3644
DNA ligases are crucial for most DNA transactions, including DNA replication, repair, and recombination. Recently, DNA ligase III (Lig3) has been demonstrated to be crucial for cell survival due to its catalytic function in mitochondria. This review summarizes these recent results and reports on a hitherto unappreciated widespread phylogenetic presence of Lig3 in eukaryotes, including in some organisms before the divergence of metazoa. Analysis of these putative Lig3 homologs suggests that many of them are likely to be found in mitochondria and to be critical for mitochondrial function. 相似文献
18.
SUMO is a small ubiquitin-like protein that is attached to target proteins, altering their localization and function. The condensin and cohesin-related Smc5/6 complex has been linked to DNA repair and checkpoint responses, but details of its molecular function have remained obscure. Recent reports show one subunit of the complex is a SUMO ligase, providing another link between protein sumoylation and DNA damage responses. 相似文献
19.
20.
An ATP-dependent DNA ligase has been demonstrated in extracts of rat liver mitochondria. The activity may be released from the mitochondria by treatment with hypotonic solutions or a detergent, indicating an intramitochondrial localization. The properties of the partially purified enzyme are similar to those of the nuclear DNA ligase from rat liver. 相似文献