首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The thyroid follicle, the morphofunctional unit of thyroid gland, is a spheroidal structure formed by a monolayer of polarized cells surrounding a closed cavity in which thyroglobulin accumulates. Newly isolated porcine thyroid cells reorganize into two types of structures which differ by the orientation of cell polarity: in follicle-like structures, obtained in the presence of TSH, the apical pole delineates a closed cavity and cells express most parameters characteristic of thyroid function; in inside-out follicles the apical pole is oriented towards the culture medium and cells do not express properly the thyroid function. The organization of newly formed follicles can be modified by stimulation of cell migration or by interaction of their apical poles with a new cell environment. Seeded on a hard surface (glass, plastic), cells of follicle-like structures or inside-out follicles formed in suspension migrate giving a monolayer. On the contrary, cells organized into a monolayer treated with hexamethylene bisacetamide, reorganize into follicle-like structures. Inside-out structures reoganize upon interaction of their apical poles with collagen I gel, a coherent matrix, or with a reconstituted basement membrane (RBM), a soft matrix. Overlaid with collagen I, monolayers reorganize into follicles. Embedded in collagen I or in RBM, inside-out follicles reorient their polarity giving functional follicles. On the RBM surface, cells pull on the gel and embed themselves in the soft matrix gel, finally reorienting their polarity to inside-in polarity. When comparing thyroid cells with other epithelial cell types (mammary cells, Sertoli cells), it appears that the obtention in culture of follicle-like structures, ie closed inside-in polarized cell organization, is the best way to express in culture both morphology and function of any specific epithelial tissue, the polarized monolayer in porous bottom culture chamber coming just behind.  相似文献   

2.
The influence of collagen gels on the orientation of the polarity of epithelial thyroid cells in culture was studied under four different conditions. (a) Isolated cells cultured on the surface of a collagen gel formed a monolayer. The apical pole was in contact with the culture medium and the basal membrane was attached to the substratum. (b) Isolated cells embedded inside the gel organized within 8 into follicles. The basal pole was in contact with collagen and the apical pole was oriented towards the interior of the follicular lumen. (c) Cells were first organized into floating vesicles, structures in which the apical surface is in contact with the culture medium, and the vesicles were embedded inside the collagen gel. After 3 d, cell polarity was inverted, the apical pole being oriented towards the cavity encompassed by cells. Vesicles had been transformed into follicles. (d) Monolayers formed on collagen gels as in a were overlaid with a second layer of collagen, which was polymerized in contact with the apical cell surface. A disorganization of the continuous pavement occurred within 24 h; cells attached to the upper layer of collagen and reorganized into follicles in the collagen sandwich within 4-8 d. A similar process occurred when the monolayer was grown on plastic and overlaid with collagen, or grown on collagen and covered with small pieces of glass cover slips. No reorganization was observed between two glass surfaces. In conclusion, first, a basal pole was always formed in the area of contact between the cell membrane and an adhesive surface and, second, the interaction of a preformed apical pole with an adhesive surface was not compatible with the stability of this domain of the plasma membrane. The interaction of the cell membrane with extracellular components having adhesive properties appears to be a determinant factor in the orientation and stabilization of epithelial cell polarity.  相似文献   

3.
Inside-out porcine thyroid follicles in culture undergo polarity reversal after being embedded in collagen gel. The newly-formed follicles reexpress some specific thyroid functions lost in inside-out follicles (Chambard et al., 1984. We present here an ultrastructural study of the inversion of polarity in this model system. This process takes place within 24 to 48 hr, without any opening of the original tight junctions, as shown by fixation in the presence of ruthenium red. A general shrinkage of cellular aggregates was noted soon after embedding. At the apical pole, three different modifications were observed: structural changes appeared in the kinocilium, microvilli and underlying cytoskeleton as early as 10 min after embedding, mainly when the apical pole of the cells was in close contact with the collagen fibers; large cytoplasmic lamellipod- or pseudopod-like extensions, covering the adjacent apical domain, protruded from outer apical regions; some other apical areas invaginated and formed channels inside the aggregates. The last two processes prevented close contact between apical cell surfaces and collagen fibers and allowed a persistence of the initial polarity in some of the cells. Newly-formed lumens were closed 24 hr after embedding in gel and the outer surface of the cellular aggregates in close contact with collagen fibers looked like a basal membrane. These mechanisms proceeded at different rates and involved different numbers of cells, but they all appeared to be related to the transformation of inside-out follicles into follicular structures.  相似文献   

4.
Beta1-integrin orients epithelial polarity via Rac1 and laminin   总被引:2,自引:0,他引:2       下载免费PDF全文
Epithelial cells polarize and orient polarity in response to cell-cell and cell-matrix adhesion. Although there has been much recent progress in understanding the general polarizing machinery of epithelia, it is largely unclear how this machinery is controlled by the extracellular environment. To explore the signals from cell-matrix interactions that control orientation of cell polarity, we have used three-dimensional culture systems in which Madin-Darby canine kidney (MDCK) cells form polarized, lumen-containing structures. We show that interaction of collagen I with apical beta1-integrins after collagen overlay of a polarized MDCK monolayer induces activation of Rac1, which is required for collagen overlay-induced tubulocyst formation. Cysts, comprised of a monolayer enclosing a central lumen, form after embedding single cells in collagen. In those cultures, addition of a beta1-integrin function-blocking antibody to the collagen matrix gives rise to cysts that have defects in the organization of laminin into the basement membrane and have inverted polarity. Normal polarity is restored by either expression of activated Rac1, or the inclusion of excess laminin-1 (LN-1). Together, our results suggest a signaling pathway in which the activation of beta1-integrins orients the apical pole of polarized cysts via a mechanism that requires Rac1 activation and laminin organization into the basement membrane.  相似文献   

5.
The expression of intracellular and surface polarity in animal pole cells of Xenopus embryos (stage 10) cultured on various substrata was studied by electron microscopy. When animal pole cells of Xenopus embryos were cultured on type I collagen- or gelatin-coated dishes until control embryos reached stage 23, the cells in confluent layers expressed an apical-basal polarity so that the apical surface membrane domain faced the culture medium. However, the cells in confluent layers cultured on naked plastic dishes were suppressed to express intracellular and surface polarity. In addition, single attached cells which were formed by being sparsely plated neither spread on any substrata nor displayed the apical-basal polarity perpendicular to the dishes. These results indicate that the expression of intracellular and surface polarity in cultured animal pole cells of Xenopus embryos requires not only cell-cell contact but also an adhesive substrata such as type I collagen or gelatin.  相似文献   

6.
The development of quail trunk neural crest cultures was dramatically altered when the cultures were overlaid with a gel of reconstituted basement membrane (RBM) components derived from the Engelbreth-Holm-Swarm sarcoma. In the presence of the RBM gel overlay, the number of catecholamine-positive (CA+) cells that developed was increased 50-fold, while the final number of melanocytes and total cells was only half that seen in the control cultures. The presence of the RBM gel overlay did not alter the time of onset of differentiation of the CA+ cells or melanocytes. The stimulation of CA+ cell number was not observed with type IV collagen substrates, laminin substrates or type I collagen gel overlays with or without added laminin. The stimulation of CA+ cell development was dependent on initial plating density. The number of CA+ cells that developed in the presence of the RBM gel was proportional to the initial plating density at 80-320 cells mm-2, whereas no CA+ cells were observed below 20 cells mm-2 and only a few CA+ cells were detected at 40 cells mm-2. There was, however, extensive cell division and differentiation of melanocytes and unpigmented cells at the lower initial plating densities. When the RBM gel was used as a substrate, rather than as an overlay, a striking rearrangement of cells into interconnected strands was observed. After several days in culture, melanocytes, CA+ cells and unpigmented cells were present in these strands. These results indicate that molecules associated with a reconstituted basement-membrane-like matrix are a potent stimulatory influence on adrenergic development and also act to inhibit the production of other cell types in neural crest cultures.  相似文献   

7.
Isolated porcine thyroid cells cultured in suspension in Eagle Minimum Essential Medium supplemented with calf serum (5-20%) reorganize to form vesicles, i.e. closed structures in which all cells have an inverted polarity as compared to that found in follicles: the apical membranes are bathed by the culture medium. Under these conditions, cells neither concentrate iodide nor respond to acute thyrotropin (TSH) stimulation. When embedded in collagen gel, these vesicles undergo polarity reversal to form follicles. We describe here the change in the orientation of cell polarity and the subsequent reappearance of specific thyroid functions. Six hr after embedding, membrane areas in contact with collagen fibers show basal characteristics. At this time, cells begin to concentrate iodide and to respond to acute TSH stimulation (iodide efflux and increased cAMP levels). Most cells form follicles 24 hr after embedding, but 48 hr are required for the transformation of all vesicles into follicles. This occurs without opening of the tight junctions. Iodide organification is detected 24 hr after embedding, when periodic acid-Schiff positive material, identified as thyroglobulin by immunofluorescence, accumulates in the lumen. Iodide concentration and organification, as well as response to TSH stimulation reach maximal levels after 3 days in the collagen matrix. After a 5-day culture in the collagen matrix in the absence of TSH, cell activity can be stimulated by chronic treatment with low hormone concentrations (10-100 microU/ml). As shown with thyroid cells grown in monolayer on permeable substrates (Chambard M., et al., 1983, J. Cell Biol. 96, 1172-1177), iodide uptake and cAMP-mediated TSH responses are expressed when the halogen and the hormone have direct access to the basal membrane. Organification, on the contrary, requires a closed apical compartment.  相似文献   

8.
The organization of tight junctional complexes (TJs) was studied in cultured porcine thyroid cells during the inversion of polarity induced by collagen-embedding of inside-out follicles, using freeze-fracture replicas and lanthanum penetration. During the early steps of polarity reversal, freeze-fractures showed that TJs generally persisted. They increased in width and progressively branched out into the basolateral surfaces, towards the basal pole. Later, the number of TJ strands decreased and gap junctions inserted within TJ networks were found between cells in reversed follicles, in the same manner as in typically polarized follicles, embedded in collagen or in suspension. The de novo formation of TJ complexes was rarely found in the reversing structures. Despite the heterogeneity of TJs assessed by freeze-fracture, impermeability to lanthanum tracer was noted in inside-out structures. During the reversal process, some TJs remained unstained, whereas others displayed permeability to lanthanum. This heterogeneity might be due to the "opening" of a small number of junctions (perhaps only one by aggregate). When the process was achieved after 48 hr in collagen, the tightness of the junctions was complete, confirmed by the absence of lanthanum in luminal cavities of newly formed follicles.  相似文献   

9.
In the embryo, epithelia give rise to mesenchyme at specific times and places. Recently, it has been reported (Greenburg, G., and E. D. Hay. 1986. Dev. Biol. 115:363-379; Greenberg, G., and E. D. Hay. 1988. Development (Camb.). 102:605-622) that definitive epithelia can give rise to fibroblast-like cells when suspended within type I collagen gels. We wanted to know whether Madin-Darby canine kidney (MDCK) cells, an epithelial line, can form mesenchyme under similar conditions. Small explants of MDCK cells on basement membrane were suspended within or placed on top of extracellular matrix gels. MDCK cells on basement membrane gel are tall, columnar in shape, and ultrastructurally resemble epithelia transporting fluid and ions. MDCK explants cultured on type I collagen gel give rise to isolated fusiform-shaped cells that migrate over the gel surface. The fusiform cells extend pseudopodia and filopodia, lose cell membrane specializations, and develop an actin cortex around the entire cell. Unlike true mesenchymal cells, which express vimentin and type I collagen, fusiform cells produce both keratin and vimentin, continue to express laminin, and do not turn on type I collagen. Fusiform cells are not apically-basally polarized, but show mesenchymal cell polarity. Influenza hemagglutinin and virus budding localize to the front end or entire cell surface. Na,K-ATPase occurs intracellularly and also symmetrically distributes on the cell surface. Fodrin becomes diffusely distributed along the plasma membrane, ZO-1 cannot be detected, and desmoplakins distribute randomly in the cytoplasm. The loss of epithelial polarity and acquisition of mesenchymal cell polarity and shape by fusiform MDCK cells on type I collagen gel was previously unsuspected. The phenomenon may offer new opportunities for studying cytoplasmic and nuclear mechanisms regulating cell shape and polarity.  相似文献   

10.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cellular polarization involves the generation of asymmetry along an intracellular axis. In a multicellular tissue, the asymmetry of individual cells must conform to the overlying architecture of the tissue. However, the mechanisms that couple cellular polarization to tissue morphogenesis are poorly understood. Here, we report that orientation of apical polarity in developing Madin-Darby canine kidney (MDCK) epithelial cysts requires the small GTPase Rac1 and the basement membrane component laminin. Dominant-negative Rac1 alters the supramolecular assembly of endogenous MDCK laminin and causes a striking inversion of apical polarity. Exogenous laminin is recruited to the surface of these cysts and rescues apical polarity. These findings implicate Rac1-mediated laminin assembly in apical pole orientation. By linking apical orientation to generation of the basement membrane, epithelial cells ensure the coordination of polarity with tissue architecture.  相似文献   

12.

Background

Basoapical polarity in epithelia is critical for proper tissue function, and control of proliferation and survival. Cell culture models that recapitulate epithelial tissue architecture are invaluable to unravel developmental and disease mechanisms. Although factors important for the establishment of basal polarity have been identified, requirements for the formation of apical polarity in three-dimensional tissue structures have not been thoroughly investigated.

Results

We demonstrate that the human mammary epithelial cell line-3522 S1, provides a resilient model for studying the formation of basoapical polarity in glandular structures. Testing three-dimensional culture systems that differ in composition and origin of substrata reveals that apical polarity is more sensitive to culture conditions than basal polarity. Using a new high-throughput culture method that produces basoapical polarity in glandular structures without a gel coat, we show that basal polarity-mediated signaling and collagen IV are both necessary for the development of apical polarity.

Conclusion

These results provide new insights into the role of the basement membrane, and especially collagen IV, in the development of the apical pole, a critical element of the architecture of glandular epithelia. Also, the high-throughput culture method developed in this study should open new avenues for high-content screening of agents that act on mammary tissue homeostasis and thus, on architectural changes involved in cancer development.  相似文献   

13.
We investigated the cellular mechanism of formation of subepidermal thick bundles of collagen (collagen lamella) during larval development of the bullfrog, Rana catesbeiana, using cDNA of alpha1(I) collagen as a probe. The originally bilayered larval epidermis contains basal skein cells and apical cells, and the collagen lamella is directly attached to the basement membrane. The basal skein cells above the collagen lamella and fibroblasts beneath it intensively expressed the alpha1(I) gene. As the skin developed, suprabasal skein cells ceased expression of the gene. Concomitantly, the fibroblasts started to outwardly migrate, penetrated into the lamella and formed connective tissue between the epidermis and the lamella. These fibroblasts intensively expressed the gene. As the connective tissue developed, the basal skein cells ceased to express the gene and were replaced by larval basal cells that did not express the gene. These dynamic changes took place first in a lateral region of the body skin and proceeded to all other regions except the tail. Isolated cultured skein cells expressed the gene and extracellularly deposited its protein as the type I collagen fibrils. Thus, it is concluded that anuran larval epidermal cells can autonomously and intrinsically synthesize type I collagen.  相似文献   

14.
MDCK cells are grown on various substrates (Thermanox pure, extracellular matrix (ECM), dried or wet collagen type I or type III), on floating collagen and enclosed in collagen gels, and their differentiation behaviour is investigated electron microscopically. The cells grown on ECM or dried collagen (type I and type III) do not show any changes as compared with the controls (Thermanox). Differentiation processes can only be observed when the cells are grown on wet collagen (type I and type III), especially on floating collagen and enclosed in collagen gels. These differentiation processes comprise changes in the cell shape, an increase in the number of microvilli, an increase in the length of the lateral contact zone with the formation of gap junctions and desmosomes, and an increase in the number and size of the cell organelles. A basement membrane only develops in the form of short segments. Moreover, on floating collagen and in collagen gels three-dimensional, organoid structures develop: cell aggregates with central lumina and tubuli. They are formed by cuboid cells that also exhibit indications of differentiation. Basement membrane fragments occur more often and are longer. It can be concluded from these findings that the chemical structure of the substrate does not play the primary role in the described process. It is rather the physical properties, probably the plasticity, that are of significance. Due to this property the cells change their shape and the contact areas increase in size. The establishment of contacts might be the triggering factor for differentiation. Organoid structures with lumina develop when the apical surface comes into contact with other cells or collagen gels. The pronounced tendency towards polarization necessitates a re-arrangement of three-dimensionally growing cells to structures with lumina. The formation of the basement membrane is the result and not the cause of differentiation.  相似文献   

15.
In considering the mechanism of transformation of epithelium to mesenchyme in the embryo, it is generally assumed that the ability to give rise to fibroblast-like cells is lost as epithelia mature. We reported previously that a definitive embryonic epithelium, that of the anterior lens, gives rise to freely migrating mesenchyme-like cells when suspended in type I collagen matrices. Here, we show that a highly differentiated epithelium that expresses cytokeratin changes to a vimentin cytoskeleton and loses thyroglobulin during epithelial-mesenchymal transformation induced by suspension in collagen gel. Using dispase and collagenase, we isolated adult thyroid follicles devoid of basal lamina and mesenchyme, and we suspended the follicles in 3D collagen gels. Cells bordering the follicle lumen retain epithelial polarity and thyroid phenotype, but basal cell surface organization is soon modified as a result of tissue multilayering and elongation of basal cells into the collagenous matrix. Cytodifferentiation, determined by thyroglobulin immunoreactivity, is lost as the basal epithelial cells move into the matrix after 3-4 days in collagen. By TEM, it can be seen that the elongating cells acquire pseudopodia, filopodia and mesenchyme-like nuclei and RER. Immunofluorescence examination of intermediate filaments showed that freshly isolated follicles and follicles cultured on planar substrata react only with anticytokeratin. However, all of the mesenchyme-like cells express vimentin and they gradually lose cytokeratin. These results suggest that vimentin may be necessary for cell functions associated with migration within a 3D matrix. The mesenchymal cells do not revert to epithelium when grown on planar substrata and the transformation of epithelium to mesenchyme-like cells does not occur within basement membrane gels. The results are relevant to our understanding of the initiation of epithelial-mesenchymal transformation in the embryo and the genetic mechanisms controlling cell shape, polarity and cytoskeletal phenotype.  相似文献   

16.
Summary An aminopeptidase N has been detected by immunofluorescence in the apical plasma membrane of porcine thyroid cells, facing the follicular lumen. Freshly isolated cells obtained by tissue trypsinization, lose their polarity and exhibit a homogeneous enzyme distribution over the whole plasma membrane. In thyrotropin-stimulated cultured cells organized into follicles, the enzyme is localized in the apical cell pole. In monolayer cells, on the other hand, the enzyme is distributed over the whole surface facing the medium. In both types of cultures fluorescence is also observed in intracytoplasmic organelles. In vivo, aminopeptidase is a marker of the apical part of the thyroid plasma membrane, but its in vitro localization depends upon cell differentiation related to the culture conditions.  相似文献   

17.
Most cells have a morphological polarity with the centrioles and Golgi apparatus occupying one pole of the cell and the nucleus the other. This structural polarity often correlates with functional polarity as in secretory epithelia where the Golgi apparatus moves to the pole of the cell from which secretory materials are exreted. In limb development an interaction of unknown mechanism occurs between the epithelium and mesenchyme. We have evaluated the pattern of cell polarity using silver impregnation of the Golgi apparatus in limb epithelium and mesenchyme of mouse embryos from day 9.5, when limbs are first visible, to day 15, when cartilage formation is complete. Cells in the epithelium almost always have the Golgi apparatus in the apex of the cell, i.e., oriented away from the basement membrane. The layer of mesenchyme cells just beneath the basement membrane initially has only 16 to 25% of the cells oriented toward the basement membrane. A marked shift in orientation occurs between days 12 and 13 so that from days 13 to 15 up to 53% of the mesenchyme cells are oriented toward the basement membrane. This shift in orientation occurs more slowly in the mesenchyme at a depth of four cells below the basement membrane. This changing pattern of mesenchymal cell polarity occurs at a time when there is an apparent increase in the amount of extracellular matrix, especially in the region just below the basement membrane.  相似文献   

18.
Epithelial cell organization into multicellular structures is a critical biological process required for both organogenesis and repair following injury. The basement membrane and the cytoskeleton have important roles in this process; however, the functions of individual components of basement membrane and cytoskeleton are poorly understood. We used IEC-6 cells, a rat intestinal crypt cell line, grown on a three-dimensional gel of reconstituted basement membrane as a model system to determine which extracellular matrix and cytoskeletal components mediate intestinal epithelial cell organization. The cells entered the gel and formed hollow, tubular structures that resembled intestinal crypts. These structures were characterized by a single layer of polarized cells with apical tight junctions and microvilli on the luminal surface. Antiserum to laminin and the pentapeptide Tyr-Ile-Gly-Ser-Arg (which prevents cell attachment to laminin) inhibited this organization, but a control pentapeptide (Tyr-Tyr-Gly-Asp-Ala) and antiserum to collagen IV did not. Cytochalasin B, which interferes with actin microfilament polymerization, also inhibited organization of cells into multicellular structures, but vinblastine and Colcemid, which disrupt microtubules, and cycloheximide, which inhibits protein synthesis, did not. We conclude that organization of intestinal epithelial cells on a basement membrane into multicellular structures results from specific interactions between cells and laminin and requires intact actin microfilaments.  相似文献   

19.
Described in the present paper is the immunolocalization of the extracellular matrix proteins (e.g., fibronectin, collagen Types I and III) in the bovine ovary, with special attention to preantral follicles. In addition, we have shown, histochemically and ultrastructurally, that mechanically isolated bovine preantral follicles are surrounded by an intact basement membrane. After 24 h of culture in serum-free medium, only 20.4% of these follicles attached to a plastic substrate. We showed that covering the plastic with extracellular matrix proteins (i.e., fibronectin, collagen Type I and matrigel) significantly increased the percentage of attached follicles to 76.0, 65.2 and 80.4%, respectively, while laminin had no effect (18.6%). When preantral follicles were embedded within three-dimensional collagen gels, no loss of follicles was observed. Restoring surface interactions between preantral follicles and the extracellular matrix in vitro, either in a two- or a three-dimensional system, might be important for maintaining follicular viability and growth in the future.  相似文献   

20.
Epithelial cysts comprise the structural units of the glandular epithelium. Although glandular inversion in epithelial tumors is thought to be a potential mechanism for the establishment of metastatic disease, little is known about the morphogenic cues and signaling pathways that govern glandular polarity and organization. Using organotypic cultures of Madin-Darby canine kidney cells in reconstituted basement membrane, we show that cellular depletion of the small GTP-binding protein ARF6 promotes the formation of inverted cysts, wherein the apical cell membrane faces the cyst exterior, and the basal domain faces the central lumen, while individual cell polarity is maintained. These cysts are also defective in interactions with laminin at the cyst–matrix interface. This inversion of glandular orientation is accompanied by Rac1 inactivation during early cystogenesis, and temporal activation of Rac1 is sufficient to recover the normal cyst phenotype. In an unnatural collagen I microenvironment, ARF6-depleted, inverted epithelial cysts exhibit some loss of cell polarity, a marked increase in Rho activation and Rac1 inactivation, and striking rearrangement of the surrounding collagen I matrix. These studies demonstrate the importance of ARF6 as a critical determinant of glandular orientation and the matrix environment in dictating structural organization of epithelial cysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号