首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the regulation of cGMP by illumination and by calcium during signal transduction in vertebrate retinal photoreceptor cells. We employed an electropermeabilized rod outer segment (EP-ROS) preparation which permits perfusion of low molecular weight compounds into the cytosol while retaining many of the features of physiologically competent, intact rod outer segments (ROS). When nucleotide-depleted EP-ROS were incubated with MgGTP, time- and dose- dependent increases in intracellular cGMP levels were observed. The steady state cGMP concentration in EP-ROS (0.007 mol cGMP per mol rhodopsin) approached the cGMP concentration in intact ROS. Flash illumination of EP-ROS in a 250-nM free calcium medium resulted in a transient decrease in cGMP levels; this occurred in the absence of changes in calcium concentration. The kinetics of the cGMP response to flash illumination of EP-ROS were similar to that of intact ROS. To further examine the effects of calcium on cGMP metabolism, dark-adapted EP-ROS were incubated with MgGTP containing various concentrations of calcium. We observed a twofold increase in cGMP steady state levels as the free calcium was lowered from 1 microM to 20 nM; this increase was comparable to the behavior of intact ROS. Measurements of guanylate cyclase activity in EP-ROS showed a 3.5-fold increase in activity over this range of calcium concentrations, indicating a retention of calcium regulation of guanylate cyclase in EP-ROS preparations. Flash illumination of EP-ROS in either a 50- or 250-nM free calcium medium revealed a slowing of the recovery time course at the lower calcium concentration. This observation conflicts with any hypothesis whereby a reduction in free calcium concentration hastens the recovery of cytoplasmic cGMP levels, either by stimulating guanylate cyclase activity or by inhibiting phosphodiesterase activity. We conclude that changes in the intracellular calcium concentration during visual transduction may have more complex effects on the recovery of the photoresponse than can be accounted for solely by guanylate cyclase activation.  相似文献   

2.
cGMP mediates vertebrate phototransduction by directly gating cationic channels on the plasma membrane of the photoreceptor outer segment. This second messenger is produced by a guanylate cyclase and hydrolyzed by a light-activated cGMP-phosphodiesterase. Both of these enzyme activities are Ca2+ sensitive, the guanylate cyclase activity being inhibited and the light-activated phosphodiesterase being enhanced by Ca2+. Changes in these activities due to a light-induced decrease in intracellular Ca2+ are involved in the adaptation of photoreceptors to background light. We describe here experiments to characterize the guanylate cyclase activity and its modulation by Ca2+ using a truncated rod outer segment preparation, in order to evaluate the enzyme's role in light adaptation. The outer segment of a tiger salamander rod was drawn into a suction pipette to allow recording of membrane current, and the remainder of the cell was sheared off with a probe to allow internal dialysis. The cGMP-gated channels on the surface membrane were used to monitor conversion of GTP, supplied from the bath, into cGMP by the guanylate cyclase in the outer segment. At nominal 0 Ca2+, the cyclase activity had a Km of 250 microM MgGTP and a Vmax of 25 microM cGMP s-1 in the presence of 1.6 mM free Mg2+; in the presence of 0.5 mM free Mg2+, the Km was 310 microM MgGTP and the Vmax was 17 microM cGMP s-1. The stimulation by Mg2+ had an EC50 of 0.2 mM Mg2+ for MgGTP at 0.5 mM. Ca2+ inhibited the cyclase activity. In a K+ intracellular solution, with 0.5 mM free Mg2+ and 2.0 mM GTP, the cyclase activity was 13 microM cGMP s-1 at nominal 0 Ca2+; Ca2+ decreased this activity with a IC50 of approximately 90 nM and a Hill coefficient of approximately 2.0.  相似文献   

3.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

4.
Photoreceptor guanylate cyclase was solubilized and purified from bovine rod outer segments with 50-150-fold increase in specific activity using the nonionic detergent n-dodecyl-beta-D-maltoside. Guanylate cyclase activities correlated with the enrichment of a protein with an apparent Mr = 112,000. The purified enzyme showed specific activities of 100-700 nmol of cGMP produced/min/mg protein and exhibited positive cooperativity with respect to MnGTP (Hill coefficient n = 1.6 +/- 0.1). The apparent Km was 274 +/- 67 microM, and the turnover number was determined to be 0.2-1.3 cGMP produced/s. The molar ratio of the 112-kDa protein to rhodopsin corresponds to 1:104. This indicates that the amount of guanylate cyclase in rod photoreceptors is nearly equimolar to the amount of the phosphodiesterase.  相似文献   

5.
Association of guanylate cyclase with the axoneme of retinal rods   总被引:4,自引:0,他引:4  
Axonemes were isolated from purified bovine retinal rod outer segments by dissolving the outer segment membranes in detergent and separating the axonemes by centrifugation on a linear detergent-containing sucrose density gradient. Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.61.2) activity was concentrated in the axoneme fraction. Guanylate cyclase eluted in the void volume when detergent-solubilized rod outer segments were subjected to exclusion chromatography on Sepharose 4B. Attempts to extract guanylate cyclase from isolated axonemes with salt, EDTA, base and other reagents were successful.  相似文献   

6.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

7.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

8.
Guanylate cyclase-activating protein 1 (GCAP-1) is a Ca(2+)-sensing protein in vertebrate photoreceptor cells. It activates a membrane-bound guanylate cyclase. Three of four cysteines present in wild-type GCAP-1 were accessible to the thiol-modifying reagent 5,5'-dithio-bis-(2-nitrobenzoic acid) in the presence of Ca(2+). Only Cys106 became exposed to the solvent after Ca(2+)-chelation. Since Cys106 is located in EF-hand 3, we could determine an apparent K(D) of 2.9 microM for Ca(2+) binding to this site with a fast off-rate (t approximately 2 ms). We conclude that the rapid dissociation of Ca(2+) from EF-hand 3 in GCAP-1 triggers activation of guanylate cyclase in rod cells.  相似文献   

9.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10−4 M to 10−8 M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

10.
This study documents the identity of a calcium- regulated membrane guanylate cyclase transduction system in the photoreceptor-bipolar synaptic region. The guanylate cyclase is the previously characterized ROS-GC1 from the rod outer segments and its modulator is S100beta. S100beta senses increments in free Ca(2+) and stimulates the cyclase. Specificity of photoreceptor guanylate cyclase activation by S100beta is validated by the identification of two S100beta-regulatory sites. A combination of peptide competition, surface plasmon resonance binding and deletion mutation studies has been used to show that these sites are specific for S100beta and not for another regulator of ROS-GC1, guanylate cyclase-activating protein 1. One site comprises amino acids (aa) Gly962-Asn981, the other, aa Ile1030-Gln1041. The former represents the binding site. The latter binds S100beta only marginally, yet it is critical for control of maximal cyclase activity. The findings provide evidence for a new cyclic GMP transduction system in synaptic layers and thereby extend existing concepts of how a membrane-bound guanylate cyclase is regulated by small Ca(2+)-sensor proteins.  相似文献   

11.
Guanylate cyclase activity was measured in disrupted rod outer segments of the toad retina. The experiments showed that cGMP is synthesized from GTP at a rate of 3 +/- 1 nmol/min per mg protein. In darkness this value is largely independent of the Ca2+ concentration, while it is enhanced by flashes of light of increasing intensity upon lowering Ca from 10-5 to 10-8 M. In view of recent observations that shortly after a flash of light calcium activity inside the photoreceptor cell decreases, it seems likely that calcium plays a regulatory role in cGMP metabolism in visual excitation.  相似文献   

12.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

13.
We have used the truncated outer segment preparation to measure rod cGMP-phosphodiesterase activity, as well as its modulation by Ca2+, in darkness and in light. The basal enzyme activity in darkness was approximately 0-3 s-1, and was largely independent of Ca2+ concentration from 10 nM to 10 microM. The steady state activity elicited by a step of light (lambda = 520 nm) was strongly enhanced by Ca2+, increasing from approximately 0.005 s-1/(h nu micron-2 s-1) at 10 nM Ca2+ to approximately 0.16 s-1/h nu micron-2 s-1) at 10 microM Ca2+. Based on these measurements, as well as previous measurements on the effects of Ca2+ on rod guanylate cyclase and the cGMP-gated channel, we have calculated the step response-intensity relation for the rod cell in steady state. This relation agrees reasonably well with the relation directly measured from intact rods. We have also evaluated the relative contributions from the three Ca2+ effects to rod sensitivity. At low background light intensities, the Ca2+ modulation of the guanylate cyclase appears to be the most important for sensitivity regulation. At higher light intensities, especially above half-saturation of the response, the Ca2+ modulation of the light-stimulated phosphodiesterase shows a progressively important influence on the light response; it also extends the Weber-Fechner behavior of the cell to higher intensities. The contribution of the Ca2+ modulation of the cGMP-gated channel is slight throughout.  相似文献   

14.
Centrifugation of homogenates of bovine retinas to isopycnic equilibrium in sucrose density gradients yielded three partially overlapping bands of particles which were, in the order of increasing density: (a) photoreceptor cell (rod) outer segments; (b) plasma membranes, lysosomes, and large fragments of endoplasmic reticulum; and (c) mitochondria. The only enzyme activity investigated which had a peak coinciding only with outer segment fractions was guanylate cyclase. Enzyme activities with peaks in both the outer segment and denser fractions included 5'-nucleotidase and cyclic GMP phosphodiesterase. Enzyme activities with peaks only in the denser fractions included sodium and potassium ion-activated ATPase ((Na+ + K+)-ATPase), adenylate cyclase, cyclic AMP phosphodiesterase, beta-glucosidase, beta-galactosidase, and succinate-dependent cytochrome c reductase. These results suggest that some of the activities once thought to be present in rod outer segments are actually present in particles from elsewhere in the retina which contaminate rod outer segment preparations.  相似文献   

15.
In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.  相似文献   

16.
Summary Guanosine triphosphatase (GTPase) activity was studied histo- and cytochemically in the rod outer segments of the rat retina by means of a newly developed method. Differences in the distribution pattern of the enzyme activity exist within the outer segment: the activity is more intense at the tip of the rod outer segments near the pigment epithelium than in their proximal portion. Ultracytochemically, the new procedure reveals the reaction product of GTPase activity partly (i) on the extradisk membrane side and (ii) on the disk membranes. This result is in contrast to the cytochemical localization of guanylate cyclase (GCLase), an enzyme also localized at the tip of the rod outer segments: GCLase activity is restricted to the intradisk membrane area of the rod outer segments. The functional role of GTPase activity in the outer segments of rods is discussed.The authors dedicate this paper to Professor K. Ogawa  相似文献   

17.
Synthesis of nitric oxide in the bovine retina.   总被引:6,自引:0,他引:6  
In the absence of light, high concentrations of cGMP open ion channels in the plasma membranes of rod outer segments. The source of stimulation of retinal guanylate cyclase is not known. Nitric oxide is a potent stimulator of guanylate cyclase in other cell systems. The present data demonstrate that nitric oxide synthase, an enzyme responsible for the production of nitric oxide, is present in retina, and specifically in the rod outer segments. This enzyme uses L-arginine as a substrate and is NADPH- and calcium- dependent. L-arginine-derived nitric oxide may be a source of activation of guanylate cyclase in the retina.  相似文献   

18.
Light activation of cyclic GMP hydrolysis in rod outer segments is mediated by a G-protein which is active in the GTP-bound form. Substitution of GTP with a nonhydrolyzable GTP analogue is thought to leave the G-protein in a persistently activated state, thereby prolonging the hydrolysis of cyclic GMP. Restoration of cyclic GMP concentration in the cell also depends upon GTP since it is the substrate for guanylate cyclase, but little is known about the effects of GTP analogues on this enzyme. We report here the effects of the analogues of GTP and ATP as inhibitors and substrates of rod disk membrane guanylate cyclase. The rate of cyclic GMP synthesis from GTP in rod disk membranes was about 50 pmol min-1 (nmol of rhodopsin)-1. Analogues of GTP and adenine nucleotides competitively inhibited the cyclase activity. The order of inhibition, with magnesium as metal cofactor, was ATP greater than GMP-PNP greater than AMP-PNP approximately GTP-gamma-S; with manganese, AMP-PNP was more inhibitory than GTP-gamma-S. The inhibition constants, with magnesium as cofactor, were 0.65-2.0 mM for GTP-gamma-S, 0.4-0.8 mM for GMP-PNP, 1.5-2.3 mM for AMP-PNP, and 0.07-0.2 mM for ATP. The fraction of cyclase activity inhibited by analogues was similar at 1 and 0.03 microM calcium. Besides inhibition of cyclase, the analogues also served as its substrates. GTP-gamma-S substituted GTP with about 85% efficiency while GMP-PNP and ATP were about 5 and 7% as efficient, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containing forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 microM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 microM and 85-120 microM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 microM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO and nitroso compounds.  相似文献   

20.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号