首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 148 毫秒
1.
采用行为观察和生化检测相结合的方法 ,在过去工作的基础上 ,研究了 12月龄和 18月龄小鼠学习记忆能力的变化和 18月龄小鼠四个脑区 (海马、大脑皮层、四叠体和小脑 )突触体内 [Ca2 ]i 的水平 ,同时还比较了老年记忆保持良好组与记忆障碍组小鼠的脑钙水平。结果表明 ,随着年龄的增长 ,小鼠的学习记忆能力显著下降 ,上述脑区 (除大脑皮层外 )突触内 [Ca2 ]i 均明显升高 ,其中老年记忆障碍小鼠脑钙水平升高最为显著。提示 ,小鼠衰老性记忆障碍可能与其脑突触体内 [Ca2 ]i 的超载有关。  相似文献   

2.
本文采用Y-迷宫和一次被动回避反应模型,观察了1,6月龄小鼠的学习记忆行为,并运用Ca~(2+)的荧光探针和AR-CM-MIC阳离子测定系统,检测了两组小鼠四个主要脑区(海马、皮层、小脑、中脑四叠体)突触体内游离钙离子浓度([Ca~(2+)]_i)的变化。结果表明随着年龄的增长,小鼠的分辨学习及记忆能力均下降,同时海马突触体内游离[Ca~(2+)]_i升高显著。  相似文献   

3.
目的和方法:用Fura-2/AM荧光显示测定细胞内游离Ca^2+浓度(〖Ca^2+〗i)的方法,我们研究了牛磺酸(Tau)对血管紧张素Ⅱ(AngⅡ)引起的培养心肌细胞(〖Ca^2+〗i)变化的影响。结果:在有Ca^2+和无Ca^2+的缓冲液中,AngⅡ(1,10,100,1000nmol/L)引起的〖Ca^2+)i和蔼同。在含Ca^2+的缓冲液中,Tau(10,20mol/L)可隽浓度地抑制Ang  相似文献   

4.
白介素—2对心肌细胞[Ca^2+]i的作用及其信号转导途径   总被引:8,自引:1,他引:8  
Cao CM  Xia Q  Ye ZG  Zhang X 《生理学报》2001,53(6):425-430
为研究白介素-2(interleukin-2,IL-2)对心肌细胞内钙浓度([Ca^2 ]i)的影响及其信号转导途径,实验采用酶解法分离成年大鼠心室肌细胞,以Fura-2/AM为钙探针,用细胞内双波长钙荧光系统检测细胞[Ca^2 ]i的变化。结果发现:(1)IL-2(0.5-200U/ml)浓度依赖性地降低单个心室肌细胞内钙态,IL-2(200U/ml)对咖啡因诱导的肌浆网内储钙的释放无影响;(2)纳洛酮(naloxone,Nal)(10^-8mol/L)和nor-binaltorphimine(nor-BNI,10^-8mol/L)可阻断IL-2对心肌细胞钙瞬态的作用,而纳曲吲哚(naltrindole,NTI)(10^-6mol/L)不能阻断此作用;(3)κ阿片受体激动剂U50488H(10^-6mol/L)降低心肌细胞钙瞬态,nor-BNI(10^-8mol/L)可阻断此作用;(4)5mg/L百日咳毒素(PTX)预处理可取消IL-2降低心肌细胞钙瞬态的作用,而酪氨酸激酶抑制剂genistein(10^-4mol/L)不能取消IL-2的作用;(5)U73122预处理可阻断IL-2的作用。研究结果表明,IL-2降低心肌细胞钙瞬态的作用,是通过心肌细胞上κ阿片受体介导的,其下游途径包括PTX敏感的G蛋白和磷脂酶C。  相似文献   

5.
6.
以辣椒(Capsicum annuum)幼苗的叶片为材料,研究了外源Ca^2 预处理对热胁迫下细胞质膜透性和谷胱甘肽(GSH)、抗坏血酸(AsA)含量变化及Ca^2 分布的影响。结果表明:外源Ca^2 预处理能减轻办迫引起的细胞膜破坏,能够减少叶片中GSH和AsA的破坏,热胁迫后,Ca^2 具有从胞外转运到胞质内和叶绿体中的趋势,外施Ca^2 预处理能够明显增加细胞间隙、液光和叶绿体中的Ca^2 颗粒密度,能够稳定热胁迫下叶肉细胞膜和叶绿体的超微结构,结果表明,外施Ca^2 预处理可能通过改变细胞内外的Ca^2 分布,减轻热胁迫对叶肉细胞的伤害。  相似文献   

7.
摘要 目的:探讨不同焦虑程度青少年首发广泛性焦虑障碍(GAD)患者血清神经肽Y(NPY)、5-羟色胺(5-HT)、脑源性神经营养因子(BDNF)的变化及其与生活应激、炎症因子和记忆功能的相关性。方法:选择2019年1月至2021年12月成都市精神卫生中心收治的147例青少年首发GAD患者,根据广泛性焦虑量表(GAD-7)分为轻度焦虑组(5-9分,50例)、中度焦虑组(10-14分,65例)、重度焦虑组(15-21分,32例)。检测血清NPY、5-HT、BDNF、C反应蛋白(CRP)、白细胞介素(IL)-1α、IL-6水平,采用学生生活应激问卷(SLSI)、延迟匹配测验(DMS)评估生活应激水平和记忆功能。比较组间血清NPY、5-HT、BDNF、CRP、IL-1α、IL-6水平以及SLSI、DMS差异,分析血清NPY、5-HT、BDNF水平与血清CRP、IL-1α、IL-6水平及SLSI、DMS的相关性。结果:重度焦虑组血清NPY、5-HT、BDNF水平低于中度焦虑组和轻度焦虑组(P<0.05),且中度焦虑组低于轻度焦虑组(P<0.05),重度焦虑组CRP、IL-1α、IL-6水平以及SLSI评分高于中度焦虑组和轻度焦虑组(P<0.05),且中度焦虑组高于轻度焦虑组(P<0.05)。重度焦虑组总延迟反应时间、无延迟反应时间长于中度焦虑组和轻度焦虑组(P<0.05),且中度焦虑组长于轻度焦虑组(P<0.05);重度焦虑组总延迟正确数、无延迟正确数少于中度焦虑组和轻度焦虑组(P<0.05),且中度焦虑组少于轻度焦虑组(P<0.05)。青少年首发GAD患者血清NPY、5-HT、BDNF水平与SLSI评分、CRP、IL-1α、IL-6、总延迟反应时间、无延迟反应时间呈负相关(P<0.05),与总延迟正确数、无延迟正确数呈正相关(P<0.05)。结论:青少年首发GAD患者随着焦虑程度加重,其生活应激强度增强、炎症因子水平升高,记忆功能减弱,且均与患者血清NPY、5-HT、BDNF水平降低有关。  相似文献   

8.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

9.
As in eukaryotes, bacterial free Ca(2+) can play an important role as an intracellular signal. However, because free Ca(2+) is difficult to measure in live bacteria, most of the evidence for such a role is indirect. Gram-negative bacteria also have an outer membrane separating the external fluid from the periplasm as well as the cytosol where most bacterial metabolism takes place. Here we report, for the first time, direct measurement of free Ca(2+) in the periplasmic space of living Escherichia coli. Periplasmic free Ca(2+) was measured by targeting the Ca(2+)-activated photoprotein aequorin to this compartment using the N-terminal OmpT signal sequence. Cytosolic free Ca(2+) was determined using aequorin alone. We show that, under certain conditions, the periplasm can concentrate free Ca(2+), resulting in the inner membrane being exposed to free Ca(2+) concentrations several fold higher than in the bulk external fluid. Manipulation of periplasmic membrane-derived oligosaccharides (MDOs) altered the free Ca(2+) as predicted by the Donnan potential. With micromolar concentrations of external free Ca(2+), the periplasm concentrated free Ca (2+) some three to sixfold with respect to the external medium. A Ca(2+) gradient also existed between the periplasm and the cytosol under these conditions, the periplasmic free Ca(2+) being some one to threefold higher. At millimolar levels of external free Ca(2+), a similar concentration was detected in the periplasm, but the bacteria still maintained tight control of cytosolic free Ca(2+) in the micromolar range. We propose that the highly anionic MDOs in the periplasmic space generate a Donnan potential, capable of concentrating Ca(2+) in this compartment, where it may constitute a sink for regulation of Ca(2+)-dependent processes in the cytoplasm.  相似文献   

10.
11.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

12.
Biophysical properties of the Ca(2+)-activated nonselective cation channel expressed in brain capillaries were studied in inside-out patches from primary cultures of rat brain microvascular endothelial cells. At -40 mV membrane potential, open probability (P(o)) was activated by cytosolic [Ca(2+)] > 1 micro M and was half-maximal at approximately 20 micro M. Increasing [Ca(2+)] stimulated opening rate with little effect on closing rate. At constant [Ca(2+)], P(o) was voltage-dependent, and effective gating charge corresponded to 0.6 +/- 0.1 unitary charges. Depolarization accelerated opening and slowed closing, thereby increasing apparent affinity for Ca(2+). Within approximately 1 min of excision, P(o) declined to a lower steady state with decreased sensitivity toward activating Ca(2+) when studied at a fixed voltage, and toward activating voltage when studied at a fixed [Ca(2+)]. Deactivated channels opened approximately 5-fold slower and closed approximately 10-fold faster. The sulfhydryl-reducing agent dithiotreitol (1 mM) completely reversed acceleration of closing rate but failed to recover opening rate. Single-channel gating was complex; distributions of open and closed dwell times contained at least four and five exponential components, respectively. The longest component of the closed-time distribution was markedly sensitive to both [Ca(2+)] and voltage. We conclude that the biophysical properties of gating of this channel are remarkably similar to those of large-conductance Ca(2+)-activated K(+) channels.  相似文献   

13.
Administration of small doses of the EDTA decreased by 15-20% the Ca2+ contentn in the blood plasma of rabbits and rats. The decrease coincided with an abrupt stimulation of the thermoregulation system of cooled animals. Restoration of the Ca2+ content in circulating blood coincided in time with repeated suppression of the system's functions. The findings corroborate the theory of a key role of the Ca2+ in sensitivity of the homoiothermal organism to cold and substantiates the method of restoring physiological functions in deep hypothermia without rewarming the body.  相似文献   

14.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

15.
Synaptic vesicles, isolated from a sheep brain cortex, accumulate Ca(2+) in a manner that depends on the pH and pCa values. In the presence of 100 microM CaCl(2), most of the Ca(2+) taken up by the vesicles was vanadate-inhibited (86%) at pH 7.4, whereas at pH 8.5, part of the Ca(2+) accumulated (36%) was DeltapH-dependent (bafilomycin and CCCP inhibited) and part was insensitive to those drugs (31%). We also observed that both vanadate-sensitive and bafilomycin-sensitive Ca(2+) accumulations were completely released by the Ca(2+) ionophore, ionomycin, and that these processes work with high (K(0.5)=0.6 microM) and low (K(0.5)=217 microM) affinity for Ca(2+), respectively. The DeltapH-dependent Ca(2+) transport appears to be largely operative at Ca(2+) concentrations (>100 microM) which completely inhibited the vanadate-sensitive Ca(2+) uptake. These Ca(2+) effects on the Ca(2+) accumulation were well correlated with those observed on the vanadate-inhibited Ca(2+)-ATPase and bafilomycin-inhibited H(+)-ATPase, respectively. The Ca(2+)-ATPase activity reached a maximum at about 25 microM (pH 7.4) and sharply declined at higher Ca(2+) concentrations. In contrast, Ca(2+) had a significant stimulatory effect on the H(+)-ATPase between 250 and 500 microM Ca(2+) concentration. Furthermore, we found that DeltapH-sensitive Ca(2+) transport was associated with proton release from the vesicles. About 21% of the maximal proton gradient was dissipated by addition of 607.7 microM CaCl(2) to the reaction medium and, if CaCl(2) was present before the proton accumulation, lower pH gradients were reached. Both vanadate-inhibited and bafilomycin-inhibited systems transported Ca(2+) into the same vesicle pool of our preparation, suggesting that they belong to the same cellular compartment. These results indicate that synaptic vesicles of the sheep brain cortex contain two distinct mechanisms of Ca(2+) transport: a high Ca(2+) affinity, proton gradient-independent Ca(2+) pump that has an optimal activity at pH 7.4, and a low Ca(2+) affinity, proton gradient-dependent Ca(2+)/H(+) antiport that works maximally at pH 8.5.  相似文献   

16.
Gastrin stimulates cell proliferation through the CCK(B) receptor coupled to Gq-protein, whereas the m3 muscarinic receptor, which also couples to Gq, has no trophic effects. In order to elucidate the cause of the difference, we stably transfected CHO cells with human CCK(B) and m3 receptors. Stimulation of the CCK(B), but not the m3 receptor increased cell growth. Activation of MAP kinase via the m3 receptor was to the same extent as that via CCK(B), indicating that there is an initial signaling common to both receptors. Stimulation of either receptor induced a transient increase in [Ca(2+)](i) followed by a sustained plateau phase. After 2 h of stimulation, the [Ca(2+)](i) response to the m3 receptor disappeared, whereas that to the CCK(B) receptor remained as a [Ca(2+)](i) oscillation. Removal of extracellular Ca(2+), which abolished [Ca(2+)](i) oscillation, completely inhibited DNA synthesis via CCK(B). When the C-terminal part of the CCK(B) receptor was truncated, the trophic effect as well as the [Ca(2+)](i) response after 2 h of stimulation disappeared, whereas the chimeric CCK(B) receptor with the C-terminal region of the m3 receptor preserved its ability to elicit both DNA synthesis and [Ca(2+)](i) oscillation. These results suggest that desensitization might be a principal determinant of cell proliferation, and the persistence of the [Ca(2+)](i) response as [Ca(2+)](i) oscillation could be essential for this type of signal transduction.  相似文献   

17.
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号