首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
T-box antitermination is one of the main mechanisms of regulation of genes involved in amino acid metabolism in Gram-positive bacteria. T-box regulatory sites consist of conserved sequence and RNA secondary structure elements. Using a set of known T-box sites, we constructed the common pattern and used it to scan available bacterial genomes. New T-boxes were found in various Gram-positive bacteria, some Gram-negative bacteria (delta-proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi, Dictyoglomi). The majority of T-box-regulated genes encode aminoacyl-tRNA synthetases. Two other groups of T-box-regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown function. Analysis of candidate T-box sites resulted in new functional annotations. We assigned the amino acid specificity to a large number of candidate amino acid transporters and a possible function to amino acid biosynthesis genes. We then studied the evolution of the T-boxes. Analysis of the constructed phylogenetic trees demonstrated that in addition to the normal evolution consistent with the evolution of regulated genes, T-boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of recent T-box regulon expansion following the loss of a previously existing regulatory system, in particular, arginine regulon in Clostridium difficile and methionine regulon in Lactobacillaceae. Finally, we described a new structural class of T-boxes containing duplicated terminator-antiterminator elements and unusual reduced T-boxes regulating initiation of translation in the Actinobacteria.  相似文献   

7.
8.
9.
10.
11.
12.
Bacillus subtilis contains seven extracytoplasmic-function sigma factors that activate partially overlapping regulons. We here identify four additional members of the sigma(X) regulon, pbpX (penicillin-binding protein), ywnJ, the dlt operon (D-alanylation of teichoic acids), and the pss ybfM psd operon (phosphatidylethanolamine biosynthesis). Modification of teichoic acids by esterification with D-alanine and incorporation of phosphatidylethanolamine into the cell membrane have a common consequence: in both cases positively charged amino groups are introduced into the cell envelope. The resulting reduction in the net negative charge of the cell envelope has been previously implicated as a resistance mechanism specific for cationic antimicrobial peptides. Consistent with this notion, we find that both sigX and dltA mutants are more sensitive to nisin than wild-type cells. We conclude that activation of the sigma(X) regulon serves to alter cell surface properties to provide protection against antimicrobial peptides.  相似文献   

13.
Erysipelothrix rhusiopathiae is a Gram-positive bacterium that represents a new class, Erysipelotrichia, in the phylum Firmicutes. The organism is a facultative intracellular pathogen that causes swine erysipelas, as well as a variety of diseases in many animals. Here, we report the first complete genome sequence analysis of a member of the class Erysipelotrichia. The E. rhusiopathiae genome (1,787,941 bp) is one of the smallest genomes in the phylum Firmicutes. Phylogenetic analyses based on the 16S rRNA gene and 31 universal protein families suggest that E. rhusiopathiae is phylogenetically close to Mollicutes, which comprises Mycoplasma species. Genome analyses show that the overall features of the E. rhusiopathiae genome are similar to those of other Gram-positive bacteria; it possesses a complete set of peptidoglycan biosynthesis genes, two-component regulatory systems, and various cell wall-associated virulence factors, including a capsule and adhesins. However, it lacks many orthologous genes for the biosynthesis of wall teichoic acids (WTA) and lipoteichoic acids (LTA) and the dltABCD operon, which is responsible for d-alanine incorporation into WTA and LTA, suggesting that the organism has an atypical cell wall. In addition, like Mollicutes, its genome shows a complete loss of fatty acid biosynthesis pathways and lacks the genes for the biosynthesis of many amino acids, cofactors, and vitamins, indicating reductive genome evolution. The genome encodes nine antioxidant factors and nine phospholipases, which facilitate intracellular survival in phagocytes. Thus, the E. rhusiopathiae genome represents evolutionary traits of both Firmicutes and Mollicutes and provides new insights into its evolutionary adaptations for intracellular survival.  相似文献   

14.
15.
The envZ11 missense mutation in the regulatory gene envZ pleiotropically repressed synthesis of OmpF, alkaline phosphatase, and several proteins of the maltose regulon. Procaine treatment of wild-type cells resulted in the same phenotype through an envZ+-mediated mechanism. Here we show that envZ11-procaine act differently on the mal and pho regulons. In the mal system, the expression of the positive regulator gene malT, measured as beta-galactosidase activity of a malT-lac+ operon fusion, was drastically reduced by procaine treatment or by the envZ11 mutation. In contrast, expression of the positive regulator of the pho regulon phoB was not reduced by procaine treatment. The products of the regulatory genes phoM, phoR, and phoU were also not required for procaine action. Procaine and envZ11 inhibited expression of only two products of the pho regulon, alkaline phosphatase and the PhoE porin. The conclusion that envZ11-procaine act differently on the mal and the pho regulons is supported by our ability to isolate second-site mutations with a Mal+ PhoA- phenotype in an envZ11 strain.  相似文献   

16.
Antitermination of transcription of catabolic operons   总被引:16,自引:2,他引:14  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号