共查询到20条相似文献,搜索用时 15 毫秒
1.
CCAAT/enhancer binding protein beta (C/EBPbeta) is known to play an important role in the expression of several genes necessary for bone development and homeostasis including osteocalcin, IGF-1, and IL-6. In this study, we show that C/EBPbeta protein levels and, consequently, DNA-binding activity are temporally regulated, dramatically decreasing upon differentiation of MC3T3-E1 mouse osteoblasts. Corresponding with these results, the constitutive expression of C/EBPbeta LAP in MC3T3-E1 osteoblasts increased proliferation and suppressed osteogenic differentiation. Thus, C/EBPbeta LAP not only appears to participate in the regulation of genes associated with mature bone physiology, but is also a critical regulator of osteoblast growth and differentiation. 相似文献
2.
3.
Zhongyang Lv Xingquan Xu Ziying Sun Yannick Xiaofan Yang Hu Guo Jiawei Li Kuoyang Sun Rui Wu Jia Xu Qing Jiang Shiro Ikegawa Dongquan Shi 《Cell death & disease》2021,12(6)
Osteoarthritis (OA) is the major course of joint deterioration, in which M1 macrophage-driven synovitis exacerbates the pathological process. However, precise therapies for M1 macrophage to decrease synovitis and attenuate OA progression have been scarcely proposed. Transient receptor potential vanilloid 1 (TRPV1) is a cation channel that has been implicated in pain perception and inflammation. In this study, we investigated the role of TRPV1 in the M1 macrophage polarization and pathogenesis of OA. We demonstrated that TRPV1 expression and M1 macrophage infiltration were simultaneously increased in both human and rat OA synovium. More than 90% of the infiltrated M1 macrophages expressed TRPV1. In the rat OA model, intra-articular injection of capsaicin (CPS), a specific TRPV1 agonist, significantly attenuated OA phenotypes, including joint swelling, synovitis, cartilage damage, and osteophyte formation. CPS treatment markedly reduced M1 macrophage infiltration in the synovium. Further mechanistic analyses showed that TRPV1-evoked Ca2+ influx promoted the phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and facilitated the nuclear localization of nuclear factor-erythroid 2-related factor 2 (Nrf2), which ultimately resulted in the inhibition of M1 macrophage polarization. Taken together, our findings establish that TRPV1 attenuates the progression of OA by inhibiting M1 macrophage polarization in synovium via the Ca2+/CaMKII/Nrf2 signaling pathway. These results highlight the effect of targeting TRPV1 for the development of a promising therapeutic strategy for OA.Subject terms: Inflammation, Osteoarthritis 相似文献
4.
5.
Nan Li Anliu Tang Shuo Huang Zeng Li Xiayu Li Shourong Shen Jian Ma Xiaoyan Wang 《Molecular and cellular biochemistry》2013,377(1-2):107-119
Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies. 相似文献
6.
7.
8.
9.
10.
Keting Bao Yongyun Li Jinlian Wei Ruoxi Li Jie Yang Jiahao Shi Baoli Li Jin Zhu Fei Mao Renbing Jia Jian Li 《Cell death & disease》2021,12(4)
Conjunctival melanoma (CM) is a rare and fatal ocular tumour with poor prognosis. There is an urgent need of effective therapeutic drugs against CM. Here, we reported the discovery of a novel potential therapeutic target for CM. Through phenotypic screening of our in-house library, fangchinoline was discovered to significantly inhibit the growth of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1. Further mechanistic experiments indicated that fangchinoline suppressed the homologous recombination (HR)-directed DNA repair by binding with far upstream element binding protein 2 (FUBP2) and downregulating the expression of HR factors BRCA1 and RAD51. In vitro and in vivo antitumour experiments revealed that fangchinoline increased the efficacy of cisplatin by blocking HR factors and reduced the drug dose and toxicity. In conclusion, our work provides a promising therapeutic strategy for the treatment of CM that is worthy of extensive preclinical investigation.Subject terms: Tumour biomarkers, Target identification 相似文献
11.
Kang JH Kim JK Park WH Park KK Lee TS Magae J Nakajima H Kim CH Chang YC 《Journal of cellular biochemistry》2007,102(2):506-514
The critical initiating event in atherogenesis involves the invasion of monocytes through the endothelial walls of arteries and the transformation of monocytes from macrophages into foam cells. Human THP-1 monocytic cells can be induced to differentiate into macrophages by phorbol myristate acetate (PMA) and can then be converted into foam cells by exposure to oxidized low-density lipoprotein (oxLDL). Also, during a chronic inflammatory response, monocytes/macrophages produce the 92-kDa matrix metalloproteinase-9 (MMP-9) that may contribute to the extravasation, migration, and tissue remolding capacities of the phagocytic cells. Here, we investigate the effect of ascochlorin (ASC), a prenylphenol antiviral compound from the fungus Ascochyta viciae, on oxLDL-induced MMP-9 expression and activity in human THP-1 macrophages. ASC reduced oxLDL-induced MMP-9 expression and activity in a time-dependent and dose-dependent manner. Also, an analysis of MMP-9 activity using pharmacologic inhibitors showed that ASC inhibits MMP-9 activity via the extracellular signal-regulated kinase 1 and kinase 2 pathways. Our results suggest that ASC may be useful as a potent clinical antiatherogenic agent, a topic of considerable interest in the biological chemistry of chemotherapeutic agents. 相似文献
12.
Increased glucocorticoids (GCs) have been implicated in the pathophysiology of depressive disorder. We previously found that dexamethasone (DEX, a synthetic GC) repressed brain-derived neurotrophic factor (BDNF)-induced synaptic proteins via suppressing extracellular signal-regulated protein kinase (ERK) signaling. Here, we investigated the possible involvement of Src homology-2 domain-containing phosphatase2 (Shp2), an ERK signaling mediator. We found that DEX suppressed Shp2 interaction with TrkB, a receptor for BDNF, in cultured cortical neurons. NSC87877, a Shp2 inhibitor, mimicked DEX, and Shp2 overexpression reversed the effect of DEX, suggesting that GCs suppress ERK signaling through inhibiting the interaction of Shp2 with TrkB. 相似文献
13.
14.
15.
16.
Zhongwei Zhao Dengke Zhang Fazong Wu Jianfei Tu Jingjing Song Min Xu Jiansong Ji 《Journal of cellular and molecular medicine》2021,25(1):549-560
Hepatocellular carcinoma (HCC) is one of the most lethal cancer types with insufficient approved therapies, among which lenvatinib is a newly approved multi-targeted tyrosine kinase inhibitor for frontline advanced HCC treatment. However, resistance to lenvatinib has been reported in HCC treatment recently, which limits the clinical benefits of lenvatinib. This study aims to investigate the underlying mechanism of lenvatinib resistance and explore the potential drug to improve the treatment for lenvatinib-resistant (LR) HCC. Here, we developed two human LR HCC cell lines by culturing with long-term exposure to lenvatinib. Results showed that the vascular endothelial growth factor receptors (VEGFR)2 expression and its downstream RAS/MEK/ERK signalling were obviously up-regulated in LR HCC cells, whereas the expression of VEGFR1, VEGFR3, FGFR1-4 and PDGFRα/β showed no difference. Furthermore, ETS-1 was identified to be responsible for VEGFR2 mediated lenvatinib resistance. The cell models were further used to explore the potential strategies for restoration of sensitivity of lenvatinib. Sophoridine, an alkaloid extraction, inhibited the proliferation, colony formation, cell migration and increased apoptosis of LR HCC cells. In vivo and in vitro results showed Sophoridine could further sensitize the therapeutic of lenvatinib against LR HCC. Mechanism studies revealed that Sophoridine decreased ETS-1 expression to down-regulate VEGFR2 expression along with downstream RAS/MEK/ERK axis in LR HCC cells. Hence, our study revealed that up-regulated VEGFR2 expression could be a predicator of the resistance of lenvatinib treatment against HCC and provided a potential candidate to restore the sensitivity of lenvatinib for HCC treatment. 相似文献
17.
Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. 总被引:15,自引:0,他引:15
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway. 相似文献
18.
Gutsch R Kandemir JD Pietsch D Cappello C Meyer J Simanowski K Huber R Brand K 《The Journal of biological chemistry》2011,286(26):22716-22729
19.