首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The venom apparatus of Lapemis hardwicki , consisting of two functional fangs, their venom glands, and associated musculature, are described. The yield of venom per snake ranged from 2.4-5.2 mg. The LD50 of the crude venom varied from 0.7-1.4 mg/kg intravenously in mice. The toxicological, chemical and immunological properties of the venom are discussed.  相似文献   

2.
腰带长体茧蜂毒液器官和卵巢的形态学及其超微结构   总被引:3,自引:0,他引:3  
陆剑锋  李永  陈学新  符文俊 《昆虫知识》2006,43(6):818-821,I0001
应用超薄切片和电镜技术,观察内寄生蜂腰带长体茧蜂Macrocentrus cingulum Brischke毒液器官和卵巢的形态结构。腰带长体茧蜂毒液器官由1个毒囊和2条毒腺组成,毒腺接于毒囊的顶端。毒腺由单层分泌细胞、退化的外胚层细胞和环腔的内膜构成,分泌细胞主要由1个明显的细胞核和1个较大囊状细胞器构成,囊状细胞器的功能是分泌毒液。毒囊由肌肉鞘和扁平细胞层构成,但没有分泌细胞。腰带长体茧蜂卵巢1对,每个卵巢由10条左右卵巢小管组成,与侧输卵管相接处略微膨大形成卵巢萼区。2条侧输卵管在产卵管基部会合形成1条总输卵管与产卵管相接。毒液器官通过毒囊的毒液导管附着在总输卵管上。对寄生蜂毒液器官的生物学、细胞学及在分类进化上的意义进行研究。  相似文献   

3.
4.
5.
Hseu  T. H.  Jou  E. D.  Wang  C.  Yang  C. C. 《Journal of molecular evolution》1977,10(2):167-182
Summary Phylogenetic trees were constructed for 62 venom toxins of snakes ofProteroglyphae suborder using matrix method. The resulting tree fromMinimum Spanning Tree-Cluster Analysis technique had the lowest percent deviation (8.55). The taxonomic relationship of these toxins agrees very well with zoological opinions. However, the appearance of the tree did not directly provide a plausible evolutionary model for the toxins. A model was derived from nodal ancestral sequence calculations, comparisons between intra-and inter-generical rates of amino acid change, and generally held ideas about protein evolution. According to the model, short neurotoxin is the ancient form of snake venom toxins. The courses of evolution leading to the present intraspecific homologous toxins are explained by gene duplication and allelomorphism.  相似文献   

6.
A multidisciplinary strategy for discovery of new Conus venom peptides combines molecular genetics and phylogenetics with peptide chemistry and neuropharmacology. Here we describe application of this approach to the conantokin family of conopeptides targeting NMDA receptors. A new conantokin from Conus rolani, ConRl‐A, was identified using molecular phylogeny and subsequently synthesized and functionally characterized. ConRl‐A is a 24‐residue peptide containing three γ‐carboxyglutamic acid residues with a number of unique sequence features compared to conantokins previously characterized. The HPLC elution of ConRl‐A suggested that this peptide exists as two distinct, slowly exchanging conformers. ConRl‐A is predominantly helical (estimated helicity of 50%), both in the presence and absence of Ca++. The order of potency for blocking the four NMDA receptor subtypes by ConRl‐A was NR2B > NR2D > NR2A > NR2C. This peptide has a greater discrimination between NR2B and NR2C than any other ligand reported so far. In summary, ConRl‐A is a new member of the conantokin family that expands our understanding of structure/function of this group of peptidic ligands targeted to NMDA receptors. Thus, incorporating phylogeny in the discovery of novel ligands for the given family of ion channels or receptors is an efficient means of exploring the megadiverse group of peptides from the genus Conus. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The phylogenetic relationships of xenodontine snakes are inferred from sequence analyses of portions of two mitochondrial genes (12S and 16S ribosomal RNA) in 85 species. Although support values for most of the basal nodes are low, the general pattern of cladogenesis observed is congruent with many independent molecular, morphological, and geographical data. The monophyly of xenodontines and the basal position of North American xenodontines in comparison with Neotropical xenodontines are favored, suggesting an Asian-North American origin of xenodontines. West Indian xenodontines (including endemic genera and members of the genus Alsophis) appear to form a monophyletic group belonging to the South American clade. Their mid-Cenozoic origin by dispersal using ocean currents is supported. Within South American mainland xenodontines, the tribes Hydropsini, Pseudoboini, and Xenodontini are monophyletic. Finally, our results suggest that some morphological and ecological traits concerning maxillary dentition, macrohabitat use, and foraging strategy have appeared multiple times during the evolution of xenodontine snakes.  相似文献   

8.
The phylogeny of the hominoid primates,as indicated by DNA-DNA hybridization   总被引:24,自引:0,他引:24  
Summary The living hominoid primates are Man, the chimpanzees, the Gorilla, the Orangutan, and the gibbons. The cercopithecoids (Old World monkeys) are the sister group of the hominoids. The composition of the Hominoidea is not in dispute, but a consensus has not yet been reached concerning the phylogenetic branching pattern and the dating of divergence nodes. We have compared the single-copy nuclear DNA sequences of the hominoid genera using DNA-DNA hybridization to produce a complete matrix of delta T50H values. The data show that the branching sequence of the lineages, from oldest to most recent, was: Old World monkeys, gibbons, Orangutan, Gorilla, chimpanzees, and Man. The calibration of the delta T50H scale in absolute time needs further refinement, but the ranges of our estimates of the datings of the divergence nodes are: Cercopithecoidea, 27–33 million years ago (MYA); gibbons, 18–22 MYA; Orangutan, 13–16 MYA; Gorilla, 8–10 MYA; and chimpanzees-Man, 6.3–7.7 MYA.  相似文献   

9.
Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.  相似文献   

10.
基于18S基因序列的姬小蜂分子系统发育   总被引:4,自引:0,他引:4  
本文基于18S rDNA部分序列,用MP和Baysian方法研究了姬小蜂科的系统发育,对姬小蜂科的单系性及其与其它小蜂科间的关系进行了讨论。姬小蜂亚科、灿姬小蜂亚科和啮姬小蜂亚科形成三个独立的支系,研究结果支持它们各自的单系性,但本结果没有明确姬小蜂科的单系性。研究结果同时还支持瑟姬小蜂族、扁股姬小蜂族和狭面姬小蜂族三个族的地位,但不支持姬小蜂族的地位。姬小蜂科的单系性及其与其它小蜂间的关系还需更多的形态学数据和更多的基因序列来进一步研究[动物学报52 (2) : 288 -301 , 2006]。  相似文献   

11.
12.
Somatostatin and its related peptides (SSRPs) form an important family of hormones with diverse physiological roles. The ubiquitous presence of SSRPs in vertebrates and several invertebrate deuterostomes suggests an ancient origin of the SSRP signaling system. However, the existence of SSRP genes outside of deuterostomes has not been established, and the evolutionary history of this signaling system remains poorly understood. Our recent discovery of SSRP-like toxins (consomatins) in venomous marine cone snails (Conus) suggested the presence of a related signaling system in mollusks and potentially other protostomes. Here, we identify the molluscan SSRP-like signaling gene that gave rise to the consomatin family. Following recruitment into venom, consomatin genes experienced strong positive selection and repeated gene duplications resulting in the formation of a hyperdiverse family of venom peptides. Intriguingly, the largest number of consomatins was found in worm-hunting species (>400 sequences), indicating a homologous system in annelids, another large protostome phylum. Consistent with this, comprehensive sequence mining enabled the identification of SSRP-like sequences (and their corresponding orphan receptor) in annelids and several other protostome phyla. These results established the existence of SSRP-like peptides in many major branches of bilaterians and challenge the prevailing hypothesis that deuterostome SSRPs and protostome allatostatin-C are orthologous peptide families. Finally, having a large set of predator–prey SSRP sequences available, we show that although the cone snail’s signaling SSRP-like genes are under purifying selection, the venom consomatin genes experience rapid directional selection to target receptors in a changing mix of prey.  相似文献   

13.
Summary A method for molecular phylogeny construction is newly developed. The method, called the stepwise ancestral sequence method, estimates molecular phylogenetic trees and ancestral sequences simultaneously on the basis of parsimony and sequence homology. For simplicity the emphasis is placed more on parsiomony than on sequence homology in the present study, though both are certainly important. Because parsimony alone will sometimes generate plural candidate trees, the method retains not one but five candidates from which one can then single out the final tree taking other criteria into account.The properties and performance of the method are then examined by simulating an evolving gene along a model phylogenetic tree. The estimated trees are found to lie in a narrow range of the parsimony criteria used in the present study. Thus, other criteria such as biological evidence and likelihood are necessary to single out the correct tree among them, with biological evidence taking precedence over any other criterion. The computer simulation also reveals that the method satisfactorily estimates both tree topology and ancestral sequences, at least for the evolutionary model used in the present study.  相似文献   

14.
The damselfish genus Dascyllus comprises nine species of both large- and small-bodied fishes distributed over the entire Indo-West Pacific. Most members of the genus have polygynous mating systems with protogynous sex change, while others are promiscuous with no sex change. Hypotheses linking presumed phylogenetic relationships with body size, sex change and mating structure have been proposed previously. However, lack of a strong phylogenetic hypothesis has prevented the careful testing of such hypotheses. In this study, the phylogenetic relationships between Dascyllus species based on mitochondrial DNA sequences (cytochrome b and 16SrRNA) have been established. The data also shed light on the relationship between mating structure and body size, as well as on the complex biogeographical patterns of the genus.  相似文献   

15.
  1. The Spalacidae is a family of strictly subterranean rodents with a long evolutionary history. It is unclear how ecological changes have influenced the evolutionary history of these mammals, and the phylogenetic relationship of the subfamilies within Spalacidae is controversial.
  2. Through compiling fossil records, reconstructing molecular phylogeny from molecular data, determining the date of divergence, and analysing their geographical evolution based on molecular data and fossil taxa, we explore the origin and evolutionary process of Spalacidae in detail. Diversification within Spalacidae dates to the Late Oligocene, approximately 25 million years ago, based on molecular data.
  3. This family originated in South and East Asia in the Late Oligocene, and then split into four clades. The first clade includes Rhizomyinae, which was highly diversified in South Asia in the Early-to-Middle Miocene. Then Rhizomyinae from Asia migrated to northern Africa in multiple waves through the Afro-Eurasian land bridge. Its range largely contracted in the Late Miocene, notably in Central Asia. The second clade includes the extinct Tachyoryctoidinae, which was confined to East and Central Asia, and survived from the Late Oligocene to the Late Miocene. The third clade includes Spalacinae, which have remained around the Mediterranean region since the Late Oligocene with slight trend of northward expansion. The fourth clade is Myospalacinae. Ancient genera of this subfamily in East Asia dispersed eastward during the Late Miocene and reached northern China and south-east Russia.
  4. The general distribution pattern of Spalacidae has persisted since the Late Miocene. Extinction of Tachyoryctoidinae and clear range contraction of Rhizomyinae in Central and East Asia are likely to have resulted from increased aridification, while the slight northward expansion of Myospalacinae and Spalacinae since the Quaternary was probably a response to a similar northward expansion of suitable vegetation for these animals.
  相似文献   

16.
17.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

18.
Aplanochytrids comprise one of three major subgroups within the Labyrinthulomycota. We have surveyed the diversity of aplanochytrids and have discovered that most isolates are difficult to identify to species because of character plasticity and ambiguity. Ten isolates were studied using molecular phylogenies based on small subunit ribosomal gene sequences (SSU rDNA) and morphological characters derived from light microscopy, SEM and TEM (e.g., colony size, colony shape, colony pattern, agar penetration, cell shape, cell surface patterns, cell inclusion characteristics and ectoplasmic net morphology). Of these isolates, we could positively identify two of them to species, namely Aplanochytrium yorkensis (Perkins, 1973) Leander and Porter, 2000 and A. minuta (Watson and Raper, 1957) Leander and Porter, 2000. We used standardized conditions for growing aplanochytrid isolates in order to minimize environmentally induced phenotypic plasticity in our comparative studies of morphology. By mapping the morphological characters listed above onto a conservative phylogenetic topology derived from SSU rDNA sequences, we were able to identify several synapomorphies (e.g., gross colony characteristics and cell surface patterns) that serve as valuable taxonomic characters for the identification of species and specific clades of aplanochytrids.  相似文献   

19.
The superfamily Conoidea is one of the most speciose groups of marine mollusks, with estimates of about 340 recent valid genera and subgenera, and 4000 named living species. Previous classifications were based on shell and anatomical characters, and clades and phylogenetic relationships are far from well assessed. Based on a dataset of ca. 100 terminal taxa belonging to 57 genera, information provided by fragments of one mitochondrial (COI) and three nuclear (28S, 18S and H3) genes is used to infer the first molecular phylogeny of this group. Analyses are performed on each gene independently as well as for a data matrix where all genes are concatenated, using Maximum Likelihood, Maximum Parsimony and Bayesian approaches. Several well-supported clades are defined and are only partly identifiable to currently recognized families and subfamilies. The nested sampling used in our study allows a discussion of the classification at various taxonomical levels, and several genera, subfamilies and families are found polyphyletic.  相似文献   

20.
王玉国 《广西植物》2010,30(6):753-759
引物选择、设计与应用策略是植物分子系统发育与进化研究的关键环节。本文综述了基因选择的原则、引物设计的技巧以及如何有效地利用所涉及的片段获取相应的PCR片段的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号