首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acetyl-coenzyme A carboxylase from Euglena gracilis strain Z was isolated as a component of a multienzyme complex which includes phosphoenolpyruvate carboxylase and malate dehydrogenase. The multienzyme complex was shown to exist in crude extracts and was purified to a homogeneous protein with a molecular weight of 360,000 by gel filtration. The ratio of the activities of the constituent enzymes was acetyl-CoA carboxylase:phosphoenolpyruvate carboxylase:malate dehydrogenase, 1:25:500. The complex is proposed to operate in conjunction with malic enzyme, which is present in Euglena, to facilitate the formation of substrates, malonyl-CoA, and NADPH, for fatty acid biosynthesis. The interaction of the enzymes may represent a means of control of acetyl-CoA carboxylase activity in organisms which do not possess an enzyme subject to allosteric regulation. The acetyl-CoA carboxylase activity from Euglena is unaffected by citrate and isocitrate.  相似文献   

2.
Using stabilizing conditions the acetyl-CoA carboxylase (EC 6.4.1.2) of Pseudomonas citronellolis has been isolated as a complex containing four different polypeptide chains with molecular weights of 53 000, 36 000, 33 000 and 25 000. Evidence is presented to suggest that these polypeptide chains correspond to distinct biotin carboxylase, transcarboxylase and biotin carboxyl carrier protein subunits in analogy with similar subunits of Escherichia coli acetyl-CoA carboxylase, an unstable complex in vitro.  相似文献   

3.
1. 1. Genetically obese mice (C5 7BL/6J-ob/ob, Jackson Laboratories) have much higher levels of hepatic acetyl-CoA carboxylase activity than their lean siblings, under a variety of nutritional states. However, when these mice are fasted for 48 h and then refed a fat-free diet for 48 h, the activity of this enzyme in the lean group shows about a 9-fold increase over the measured under normal dietary conditions, while obese mice show only 1 2-fold increase. The acetyl-CoA carboxylase activity observed under the dietary conditions is thus comparable in both lean and obese animals. Oil feeding or fasting for 48 h markedly depresses the activity of this enzyme in both groups and seems to be an effective means of reducing acetyl-CoA carboxylase activity in the obese mice, particularly, to far below the values found under normal dietary conditions.
2. 2. Both acetyl-CoA carboxylase and fatty acid synthetase purified from livers of obese and lean mice show comparable specific activities and no demonstrable differences with respect to their kinetic properties. Acetyl-CoA carboxylase from the two sources is also identical with respect to sensitivity to reagents and other inhibitors (such as malonyl-CoA, palmitoyl-CoA, etc.), to heat inactivation and in its sedimentation properties.
These results suggest quantitative differences rather than differences in the catalytic and regulatory properties of the obese and lean enzymes.  相似文献   

4.
M L Hector  R R Fall 《Biochemistry》1976,15(16):3465-3472
Pseudomonas citronellolis was shown to contain four different acyl-coenzyme A carboxylases, including acetyl-, propionyl-, 3-methylcrotonyl-, and geranyl-CoA carboxylases, when grown on the appropriate carbon sources. Acetyl-CoA carboxylase activity in crude extracts was stimulated approximately 40-fold by inclusion of 0.4-0.5 M ammonium sulfate in the assay. Unexpectedly high levels of propionyl-CoA carboxylase activity, also stimulated by ammonium sulfate, were found in acetate-grown cells. That these acetyl- and propionyl-CoA carboxylase activities were due to different enzymes was shown by their resolution during purification by a procedure that stabilized acetyl-CoA carboxylase as a complex and separated propionyl-CoA carboxylase into two required protein fractions. Propionate- or valine-grown cells contained a propionyl-CoA carboxylase activity that was strongly inhibited by ammonium sulfate in the assay, and which may represent an inducible form of the enzyme. Geranyl- and 3-methylcrotonyl-CoA carboxylases that catalyze the carboxylation of the 3-methyl groups of homologous acyl-CoA acceptors, were induced by growth on the monoterpenes, citronellic or geranoic acid; only 3-methylcrotonyl-CoA carboxylase was induced by growth on leucine or isovaleric acid. Induction of either carboxylase was associated with the appearance of similar high-molecular-weight, biotin-containing proteins as measured by gel filtration. These two carboxylases are probably distinct enzymes since 3-methyl-crotonyl-CoA carboxylase from isovalerate-grown cells does not carboxylate geranyl-CoA, while geranyl-CoA carboxylase will carboxylate both acyl-CoA homologues. P. citronellolis appears to be a useful system for studying the structural aspects of pairs of homologous acyl-CoA carboxylases.  相似文献   

5.
A multienzyme complex from Euglena, molecular weight about 360,000, containing phosphoenolpyruvate carboxylase, malate dehydrogenase, and acetyl-coenzyme A carboxylase has been dissociated into active constituent enzymes. The respective molecular weights are 183,000, 67,000, and 127,000. The malate dehydrogenase contained in the complex is electrophoretically distinct from other malate dehydrogenase isozymes found in Euglena. The K-m for HCO3minus of the free and complexed acetyl-CoA carboxylase is 4.2-5.4 mM, and the substrate dependency for acetyl-CoA describes a sigmoidal relationship. The HCO3minus K-m for the free phosphoenolpyruvate carboxylase is 7.3-5.4 mM while that for the same enzyme contained in the complex is 0.7-1.3 mM. Both the free and complexed forms ofphosphoenolpyruvate carboxylase have a K-m for phosphoenolpyruvate of 0.9-1.7 mM. The latter enzyme in both the complex and free forms is stimulated by NADH, acetyl-CoA, and ATP. In the free phosphoenolpyruvate carboxylase, the stimulation passes through a maximum depending on effector concentration. The effect of NADH is to increase V-max while K-m values remain unmodified.  相似文献   

6.
1. Highly purified rat mammary-gland acetyl-CoA carboxylase was inhibited by milk obtained from rats 12h after their young were weaned. 2. All the inhibitory activity was found in the particulate fraction (R(105)) obtained on centrifuging the milk. It could be extracted from milk fraction R(105) with acetone and identified as a complex mixture of non-esterified fatty acids, present in high concentration (nearly 10mm) in the milk. 3. Inhibition of acetyl-CoA carboxylase was observed at low concentrations (0.2-20mum) of several of these fatty acids when fresh fully active enzyme was used. Enzyme that had been partly inactivated by aging, or by storing in the absence of citrate, was stimulated by low concentrations but inhibited by high concentrations of fatty acids. 4. Various experiments suggested that fatty acids produce irreversible inactivation of acetyl-CoA carboxylase. 5. The effects of palmitoyl-CoA on mammary-gland acetyl-CoA carboxylase were found to resemble those of fatty acids, except that palmitoyl-CoA was effective at lower concentration. 6. The effect of milk fraction R(105) was tested on six other enzymes previously shown to decline to various extents after weaning. Although several of these enzymes were affected by unfractionated milk fraction R(105), none was significantly inhibited by the acetone extract or by low concentrations of lauric acid. 7. The findings are consistent, both qualitatively and quantitatively, with a regulatory mechanism whereby milk fatty acids shut off fatty acid synthesis in the mammary gland after weaning by inhibiting acetyl-CoA carboxylase.  相似文献   

7.
8.
The zonal distribution within rat liver of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase, the principal enzymes of fatty acid synthesis, was investigated by using dual-digitonin-pulse perfusion. Analysis of enzyme mass by immunoblotting revealed that, in normally feeding male rats, the periportal/perivenous ratio of acetyl-CoA carboxylase mass was 1.9. The periportal/perivenous ratio of ATP citrate-lyase mass was 1.4, and fatty acid synthase exhibited the largest periportal/perivenous mass gradient, having a ratio of 3.1. This pattern of enzyme distribution was observed in male rats only; in females, the periportal/perivenous ratio of enzyme mass was nearly equal. The periportal/perivenous gradients for acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase observed in fed (and fasted) males were abolished when animals were fasted (48 h) and refed (30 h) with a high-carbohydrate/low-fat diet. As determined by enzyme assay of eluates obtained from the livers of normally feeding male rats, there is also periportal zonation of acetyl-CoA carboxylase activity, expressed either as units per mg of eluted protein or units per mg of acetyl-CoA carboxylase protein, suggesting the existence of gradients in both enzyme mass and specific activity. From these results, we conclude that the enzymes of fatty acid synthesis are zonated periportally in the liver of the normally feeding male rat.  相似文献   

9.
The activities of glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthetase and acetyl-CoA carboxylase (extracted with or without phosphatase inhibitor) in rat liver did not vary significantly during 24 h. The hepatic levels of glucose 6-phosphate and malate increased coordinately 3-6 h after the beginning (1900 h) of food intake and were high until morning, whereas the levels of acetyl-CoA and citrate peaked at 1900 h and then decreased. However, it is remarkable that the in vivo incorporation of 3H from tritiated water into fatty acids in liver increased with the level of malonyl-CoA after food intake. Comparing the substrate and effector levels with the Km and Ka values for the enzymes, the levels of acetyl-CoA, malonyl-CoA and citrate appear to limit the enzyme activities. It is suggested that, after food intake, the physiological activity of acetyl-CoA carboxylase was increased with the substrate increase and/or with the catalytic activation with citrate, and consequently, the fatty acid synthetase activity was also increased, whereas the enzyme activities measured under optimum conditions were not.  相似文献   

10.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

11.
The existence of a microsomal acetyl-CoA carboxylase in the rat epididymal adipose tissue was demonstrated in vitro in the present study. Its specific activity was of the same order of magnitude as that of the cytoplasmic acetyl-CoA carboxylase. The effect of several experimental conditions on the enzymatic activities of both enzymes were tested; fasting for 24 hr strongly increased (2.5-4 times) the activity of the microsomal enzyme while the cytoplasmic enzyme remained unchanged. Palmitoyl-CoA (1 and 5 microM), an inhibitor of acetyl-CoA carboxylase, had a greater effect on the cytoplasmic (33 and 88% inhibition) than on the microsomal enzyme (0 and 37% inhibition).  相似文献   

12.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

13.
1. Acetyl-CoA carboxylase (EC 6.4.1.2) and methylmalonyl-CoA carboxyltransferase (EC 2.1.3.1) have been isolated from mycelia of Streptomyces noursei var. polifungini, and purified about 50-fold. 2. Both enzymes carboxylate acetyl-CoA and propionyl-CoA; the respective Km values are 1.1 and 1.6 mM with acetyl-CoA carboxylase and 2.5 and 1.25 mM with carboxyltransferase. 3. The activities of both enzymes are inhibited by free fatty acids. Almost total inhibition of methylmalonyl-CoA carboxyltransferase was observed by 0.1 mM-butyrate or 0.1 mM-C14-C18 acids. Acetyl-CoA carobxylase was affected to the same extent by these compounds at concentration of about 1 mM. 4. The role of both carboxylating enzymes is biosynthesis of the antibiotic is discussed.  相似文献   

14.
Biotinyl proteins were labelled by incubation of SDS-denatured preparations of subcellular fractions of rat liver with [14C]methylavidin before polyacrylamide-gel electrophoresis. Fluorographic analysis showed that mitochondria contained two forms of acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming) EC 6.4.1.2], both of which were precipitated by antibody to the enzyme. When both forms were considered, almost three-quarters of the total liver acetyl-CoA carboxylase was found in the mitochondrial fraction of liver from fed rats while only 3.5% was associated with the microsomal fraction. The remainder was present in cytosol, either as the intact active enzyme or as a degradation product. The actual specific activity of the cytosolic enzyme was approx. 2 units/mg of acetyl-CoA carboxylase protein while that of the mitochondrial enzyme was about 20-fold lower, indicating that mitochondrial acetyl-CoA carboxylase was relatively inactive. Fractionation of mitochondria with digitonin showed that acetyl-CoA carboxylase was associated with the outer mitochondrial membrane. The available evidence suggests that mitochondrial acetyl-CoA carboxylase represents a reservoir of enzyme which can be released and activated under lipogenic conditions.  相似文献   

15.
We measured acetyl-CoA carboxylase mRNA levels in various tissues of the rat under different nutritional and hormonal states using a cDNA probe. We surveyed physiological conditions which are known to alter carboxylase activity, and thus fatty acid synthesis, to determine whether changes in the levels of carboxylase mRNA are involved. The present studies include the effects of fasting and refeeding, diabetes and insulin, and lactation on carboxylase mRNA levels. Northern blot analysis of liver RNA revealed that fasting followed by refeeding animals a fat-free (high carbohydrate) diet dramatically increased the amount of carboxylase mRNA compared to the fasted condition. These changes in the level of mRNA correspond to changes in the activity and amount of acetyl-CoA carboxylase. Acetyl-CoA carboxylase mRNA levels in epididymal fat tissue decreased upon fasting and increased to virtually normal levels after 72 h of refeeding, closely resembling the liver response. The amount of acetyl-CoA carboxylase mRNA decreased markedly in epididymal fat tissue of diabetic rats as compared to nondiabetic animals. However, 6 h after injection of insulin the mRNA level returned to that of the nondiabetic animals. Gestation and lactation also affected the levels of carboxylase mRNA in both liver and mammary gland. Maximum induction in both tissues occurred 5 days postpartum. These studies suggest that these diverse physiological conditions affect fatty acid synthesis in part by altering acetyl-CoA carboxylase gene expression.  相似文献   

16.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

17.
Avidin affinity chromatography was used to rapidly purify acetyl-CoA carboxylase to homogeneity in high yield from chicken liver. Dissociation of the purified carboxylase with dodecyl sulfate yielded a single size class of subunit polypeptide of 225,000 daltons. A steady state kinetic analysis of the carboxylase-catalyzed carboxylation of acetyl-CoA gave rise to intersecting line patterns in all double-reciprocal plots of initial velocity with each substrate pair, i.e. ATP . Mg and HCO3(-) and acetyl-CoA. It was concluded that the kinetic mechanism involves a quaternary complex of the enzyme, ADP, Pi, and acetyl-CoA rather than a double displacement as previously believed. The ordered addition of ATP, HCO3(-), and then acetyl-CoA, to the citrate-activated form of the carboxylase is the kinetic mechanism most consistent with the results.  相似文献   

18.
Purification and properties of acetyl-CoA carboxylase phosphatase   总被引:1,自引:0,他引:1  
Acetyl-CoA carboxylase phosphatase has been purified from the rat epididymal fat pad. The phosphatase occurs in a complex with the carboxylase. In the purification of the phosphatase, the high molecular weight complex was initially separated by sucrose gradient centrifugation, and the phosphatase was isolated from the complex by adjusting to 80% saturation with ethanol and by chromatography on Sephadex G-75. The molecular weight of the phosphatase is 71,000 as determined by sodium dodecyl sulfate gel electrophoresis and gel chromatography on Sephacryl-200 in the presence of 6 M urea. The Km for acetyl-CoA carboxylase and glycogen phosphorylase a are 1.5 microM and 37 microM, respectively. The phosphatase has a broad substrate specificity, being active toward glycogen synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, phosphorylase a, phosphoprotamine, and p-nitrophenyl phosphate, in addition to acetyl-CoA carboxylase from fat tissue and liver. Acetyl-CoA carboxylase inhibits the dephosphorylation of phosphoprotamine, indicating that the same activity is responsible for dephosphorylating both substrates. The phosphatase requires no metal ion for activity and is not inhibited by the rat liver phosphorylase phosphatase inhibitor protein. The significance of these findings is discussed in relation to the regulation of acetyl-CoA carboxylase, and the phosphatase is compared to other phosphoprotein phosphatases.  相似文献   

19.
The hormonal regulation of two regulatory enzymes of fatty acid synthesis acetyl-CoA carboxylase (EC 6.4.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49), has been investigated in human diploid fibroblasts. There was a 35% increase in acetyl-CoA carboxylase activity, 72 h following addition of 10 microU/ml insulin to the culture medium. Addition of 1 microgram/ml of 3,3'5-triiodothyronine for 72 h resulted in an increase in acetyl-CoA carboxylase activity to 166% of the controls. The simultaneous addition of 1 microgram/ml triiodothyronine and 10 mU/ml insulin caused the enzyme activity to rise to 240% of the controls. A dose-dependent reduction in acetyl-CoA carboxylase activity was brought about by 1 X 10(-4) to 1 X 10(-3) M dibutyryl cyclic AMP. The earliest effect of dibutyryl cyclic AMP was observed within 24 h. Glucose-6-phosphate dehydrogenase followed qualitatively the same pattern of response, whereas the constitutive enzyme, lactate dehydrogenase (EC 1.1.1.27), did not show significant changes in these experiments. The data demonstrate common features of hormonal regulation of lipogenesis in human fibroblasts with liver and adipose tissue and substantiate the growing evidence that thyroid hormones are of major importance for the regulation of this process.  相似文献   

20.
When chick liver cells in monolayer culture were incubated with 32Pi in the presence of insulin, acetyl-CoA carboxylase became extensively labeled with 32Pi reaching a stoichiometry of 9 to 10 mol of phosphoryl group per mol of 240,000-dalton enzyme subunit. The covalently bound phosphate was found to be metabolically labile, turning over with a t1/2 of approximately 2 h (enzyme t1/2 approximately equal to 24 h). Addition of Bt2cAMP altered neither the rate nor extent of phosphorylation. Contrary to other reports, the fully phosphorylated acetyl-CoA carboxylase appears to be catalytically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号