首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosome-inactivating proteins (RIPs) are a widely distributed family of plant enzymes that are remarkably potent catalytic inactivators of eukaryotic protein synthesis. All RIPs described to date, including the A-chain of the plant cytotoxin ricin, are polypeptides of 25-32 kDa and share significant amino acid sequence homologies. We have characterized and cloned an RIP from maize (Zea mays). In contrast to previously described RIPs, we have found that maize RIP is synthesized and stored in the kernel as a 34-kDa inactive precursor (isoelectric point = 6.5). During germination, this neutral precursor is converted into a basic, active form (isoelectric point greater than 9) by limited proteolysis, which removes 25 amino acids (2.8 kDa) of net charge -6 from the center of the polypeptide chain. Additional processing also occurs at the amino and carboxyl termini of the polypeptide. The sequence of the internal processed region is unique and it is equivalent to an insertion centered around Thr-156 in the amino acid sequence of ricin toxin A-chain, i.e. in the center of the enzymatically active domain. The generation of an active enzyme by removal of a large amino acid segment from the middle of a precursor polypeptide chain represents a novel mechanism of proenzyme activation that is distinct from more conventional activation mechanisms involving NH2-terminal proteolytic processing. A two-chain active RIP (comprised of 16.5- and 8.5-kDa fragments that remain tightly associated) is produced from this processing event.  相似文献   

2.
A single gene, VMA1, encodes the 69-kDa subunit of the vacuolar membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. We have proposed that the subunit is synthesized as a precursor of 120 kDa (1,071 amino acids) and then converted to the 69-kDa form by an unusual processing reaction, which removes the internal domain of 454 amino acids (residues 284-737) and joins the N- and C-terminal domains. Cysteine to serine mutations at residues 284 and 738, the residues that bracket the internal domain, were introduced into the VMA1 gene by site-directed mutagenesis, and the mutant genes were expressed in a null vma1 mutant. Cells harboring either of the mutant vma1 genes accumulate nonfunctional fragments of the subunit. The mutation of Cys-284 inhibited the cleavage of the N-terminal junction site. Cys-738-->Ser mutation appeared to block the processing at both junction sites although the mutant gene yielded a small fraction of the functional 69-kDa subunit.  相似文献   

3.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

4.
Import of the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase into the chloroplast has been proposed to involve two proteolytic cleavages which convert the 20-kDa precursor (pSSU) into the mature 14-kDa subunit (SSU) via an 18-kDa intermediate. A deletion mutant (PSd48/57) of pSSU which lacks 10 amino acids in a conserved region in the carboxyl-terminal portion of the transit peptide is converted into a series of 16-18-kDa polypeptides in addition to the mature 14-kDa SSU when imported into isolated pea chloroplasts. We examined import and processing of this mutant pSSU to determine whether the 16-18-kDa SSUs undergo further maturation in the chloroplast stroma to yield 14-kDa SSU. The ratio of incorrectly processed to 14-kDa SSU is stable up to 60 min following import. This indicates that processing of PSd48/57 involves a single proteolytic cleavage which occurs during or immediately following transit across the chloroplast envelope. The carboxyl-terminal portion of the transit peptide confers either sequence specificity for the processing protease or provides a three-dimensional structure necessary for consistent cleavage at the mature amino terminus of SSU. Incorrectly processed SSUs were incorporated into the holoenzyme demonstrating that removal of the entire transit sequence is not necessary for assembly of the holoenzyme.  相似文献   

5.
Processing of precursor interleukin 1 beta and inflammatory disease   总被引:11,自引:0,他引:11  
The processing of precursor interleukin 1 beta (IL1 beta) by elastase, cathepsin G, and collagenase, the major proteases released at sites of inflammation, was investigated using recombinant pro-IL1 beta. Each of these proteases cleaved the 31-kDa inactive precursor to a form similar in size and specific activity (greater than 10(8) units/mg) to the 17-kDa mature protein isolated from activated monocytes. Elastase, collagenase, and cathepsin G cleaved the IL1 beta precursor at distinct sites which are amino-terminal to the monocyte-processing site, Ala-117 (Cameron, P., Lumjuco, G., Rodkey, J., Bennett, C., and Schmidt, J. A. (1985) J. Exp. Med. 162, 790-801). Amino-terminal sequencing of the products of digestion by elastase and cathepsin G determined that resultant active IL1 beta proteins contained an additional 13 or 3 amino acids relative to mature IL1 beta. Synovial fluid collected from patients with inflammatory polyarthritis and bronchoalveolar lavage fluid from patients with sarcoidosis supplied similar processing activity(s). Control fluids from patients who had no symptoms of inflammatory disease did not exhibit processing activity. Lavage fluids that processed precursor IL1 beta were demonstrated to contain cathepsin G and/or elastase activity, whereas controls were negative. Because a significant fraction of IL1 beta may be secreted from monocytes as the inactive 31-kDa precursor (Hazuda, D. J., Lee, J. C., and Young, P. R. (1988) J. Biol. Chem. 263, 8473-8479, Bomford, R., Absull, E., Hughes-Jenkins, C., Simpkin, D., and Schmidt, J. (1987) Immunology 62, 543-549, and Mizel, S. B. (1988) in Cellular and Molecular Aspects of Inflammation Poste, G., and Crooke, S., eds) pp. 75-93, Plenum Publishing Corp., New York), these results suggest that in vivo the IL1 beta precursor can be processed after secretion by any of several proteases released at inflammatory sites.  相似文献   

6.
Tissue-specific isozymes of glutamine synthetase are present in elasmobranchs. A larger isozyme occurs in tissues in which the enzyme is localized in mitochondria (liver, kidney) whereas a smaller form occurs in tissues in which it is cytosolic (brain, spleen, etc.). The nucleotide sequence of spiny dogfish shark (Squalus acanthias) liver glutamine synthetase mRNA, derived from its cDNA, shows there are two in-frame initiation codons (AUG) at the N-terminus which will account for the size differences between the two isozymes. Initiation at the up-stream and down-stream sites would yield peptides of 45,406 and 41,869 mol. wts. representing the precursor of the mitochondrial isozyme and the cytosolic isozyme, respectively. The additional N-terminal 29 amino acids present in the mitochondrial isozyme precursor contains two putative cleavage sites based on the Arg-X-(Phe,Ile,Leu) motif. The predicted two-step processing would remove 14 of the 29 N-terminal amino acids. These 14 amino acids can be predicted to form a very strong amphipathic mitochondrial targeting signal. Their removal would yield a mature peptide of 43,680 mol. wt. The calculated mol. wts. based on the derived amino acid sequence are therefore in good agreement with previous estimates of an approximately 1.5–2-kDa difference between the Mrs of the mitochondrial and cytosolic isozymes. A model for the evolution of the mitochondrial targeting of glutamine synthetase in vertebrates is proposed. Correspondence to: J.W. CampbellThe nucleotide sequence reported will appear in GenBank under accession number U04617  相似文献   

7.
Sulfated glycoprotein 1 (SGP-1) is one of the abundant proteins secreted by rat Sertoli cells. Pulse-chase labeling shows that SGP-1 is synthesized as a cotranslationally glycosylated 67-kilodalton (kDa) precursor which is posttranslationally modified to a 70-kDa form before secretion to the extracellular space. A plasmid cDNA library was constructed from immunopurified mRNA, and two overlapping clones coding for the entire protein coding sequence were isolated. The cDNAs represent 27 nucleotides of 5' noncoding sequence, 1554 nucleotides of coding sequence, and 594 nucleotides of 3' noncoding sequence. The derived SGP-1 sequence contains 554 amino acids and has a molecular weight of 61,123. Four potential N-glycosylation sites occur within the sequence. An internal region of SGP-1 shows 78% sequence identity with the 67 N-terminal amino acids described for human sulfatide/GM1 activator (SAP-1). Sequence comparisons suggest that SGP-1 is the precursor to sulfatide/GM1 activator; however, the secretion of the protein from Sertoli cells is distinct from the proteolytic processing and lysosomal compartmentalization which have been described for human fibroblasts. The presence of internal sequence similarity suggests that three additional binding sites may occur in SGP-1. Northern blots show similar levels of expression for the 2.6-kilobase SGP-1 mRNA in all tissues examined. The site of SGP-1 synthesis in testis was localized to Sertoli cells by immunofluorescence and in situ hybridization.  相似文献   

8.
Chloroplast import and processing of two precursor proteins with mutations in the carboxyl-terminal region of the transit peptide were examined in vitro. Deletion mutations were introduced into the 57-amino acid transit peptide of a chloroplast protein, the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, from pea. A mutant, PSd48/57, in which nine carboxyl-terminal amino acids of the transit peptide had been deleted, was imported and processed to a series of 13- to 18-kDa polypeptides including the 14-kDa mature small subunit. In contrast, processing of a mutant, PSd45/57, in which an additional three amino acids had been removed, resulted in a series of polypeptides which did not include the mature small subunit. Whereas PSd48/57 was imported as efficiently as the wild-type precursor, import of PSd45/57 was only 25% as efficient as that of the authentic precursor. The mutant precursor proteins PSd48/57 and PSd45/57 are distinguished by a three-amino acid sequence, Ile-Thr-Ser, located in the carboxyl-terminal region of the transit peptide. We show that all or part of this sequence is required for correct processing.  相似文献   

9.
Prediction of neuropeptide cleavage sites in insects   总被引:1,自引:0,他引:1  
MOTIVATION: The production of neuropeptides from their precursor proteins is the result of a complex series of enzymatic processing steps. Often, the annotation of new neuropeptide genes from sequence information outstrips biochemical assays and so bioinformatics tools can provide rapid information on the most likely peptides produced by a gene. Predicting the final bioactive neuropeptides from precursor proteins requires accurate algorithms to determine which locations in the protein are cleaved. RESULTS: Predictive models were trained on Apis mellifera and Drosophila melanogaster precursors using binary logistic regression, multi-layer perceptron and k-nearest neighbor models. The final predictive models included specific amino acids at locations relative to the cleavage sites. Correct classification rates ranged from 78 to 100% indicating that the models adequately predicted cleaved and non-cleaved positions across a wide range of neuropeptide families and insect species. The model trained on D.melanogaster data had better generalization properties than the model trained on A. mellifera for the data sets considered. The reliable and consistent performance of the models in the test data sets suggests that the bioinformatics strategies proposed here can accurately predict neuropeptides in insects with sequence information based on neuropeptides with biochemical and sequence information in well-studied species.  相似文献   

10.
Abstract: We have investigated the roles of full-length and carboxyl-terminus-truncated forms of the subtilisin-like prohormone convertase SPC3 in the processing of the radiolabeled vasopressin and oxytocin precursors, in vitro. We found SPC3 cleaves provasopressin at both the vasopressin-neurophysin and neurophysin-glycopeptide processing sites. Prooxytocin is cleaved by SPC3 at the oxytocin-neurophysin cleavage site. However, our results reveal differences in processing of provasopressin by the different molecular forms of SPC3. In incubations where the rate of autocatalytic carboxyl-terminus truncation of SPC3 was dramatically reduced, 86-kDa SPC3, which has an unprocessed carboxyl terminus, cleaved provasopressin at the neurophysin-glycopeptide junction. Cleavage at the vasopressin-neurophysin junction only occurred with the appearance of carboxyl-terminus-truncated forms of the enzyme. Incubations containing 64-kDa SPC3 or 64-kDa SPC3-T, a recombinant form of SPC3 truncated 14 amino acids beyond the conserved carboxyl-terminal "P-domain," rapidly cleaved provasopressin at both the vasopressin-neurophysin and neurophysin-glycopeptide junctions. Our results also suggest that prooxytocin is unable to be cleaved by the 86-kDa form of SPC3. We propose that SPC3 should be considered as a candidate endoprotease in the biosynthesis of vasopressin. Furthermore, we suggest that the carboxyl terminus of SPC3 alters the cleavage specificity of SPC3.  相似文献   

11.
Lefty polypeptides, novel members of the transforming growth factor-beta (TGF-beta) superfamily, are involved in the formation of embryonic lateral patterning. Members of the TGF-beta superfamily require processing for their activation, suggesting cleavage to be an essential step for lefty activation. Transfection of different cell lines with lefty resulted in expression of a 42-kDa protein, which was proteolytically processed to release two polypeptides of 34 and 28 kDa. Since members of the proprotein convertase (PC) family cleave different TGF-beta factors and are involved in the establishment of embryonic laterality, we studied their role in lefty processing. Cotransfection analysis showed that PC5A processed the lefty precursor to the 34-kDa form in vivo, whereas furin, PACE4, PC5B, and PC7 had a limited activity. None of these PCs showed activity in the processing of the lefty polypeptide to the 28-kDa lefty form. The mutation of the consensus sequences for PC cleavage in the lefty protein allowed the lefty cleavage sites to be identified. Mutations of the sequence RGKR to GGKG (amino acids 74-77) and of RHGR to GHGR (amino acids 132-135) prevented the proteolytic processing of the lefty precursor to the 34- and 28-kDa forms, respectively. To identify the biologically active form of lefty, we studied the effect of lefty treatment on pluripotent P19 cells. Lefty did not induce Smad2 or Smad5 phosphorylation, Smad2/Smad4 heterodimerization, or nuclear translocation of Smad2 or Smad4, but activated the MAPK pathway in a time- and dose-dependent fashion. Further analysis showed the 28-kDa (but not the 34-kDa) polypeptide to induce MAPK activity. Surprisingly, the 42-kDa lefty protein was also capable of inducing MAPK activity, indicating that the lefty precursor is biologically active. The data support a molecular model of processing as a mechanism for regulation of lefty signaling.  相似文献   

12.
We demonstrate that the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP of Photosystem II), encoded by a Type I gene, contains distinct determinants for processing at two sites during in vitro import into the chloroplast. Using precursors from both pea and wheat, it is shown that primary site processing, and release of a approximately 26-kD peptide, depends on an amino-proximal basic residue. Substitution of an arginine at position -4 resulted in an 80% reduction in processing, with the concomitant accumulation of a high molecular weight intermediate. Cleavage occurred normally when arginine was changed to lysine. The hypothesis that a basic residue is a general requirement for transit peptide removal was tested. We find that the precursors for the small subunit of Rubisco and Rubisco activase do not require a basic residue within seven amino acids of the cleavage site for maturation. In the wheat LHCP precursor, determinants for efficient cleavage at a secondary site were identified carboxy to the primary site, beyond what is traditionally called the transit peptide, within the sequence ala-lys-ala-lys (residues 38-41). Introduction of this sequence into the pea precursor, which has the residues thr-thr-lys-lys in the corresponding position, converted it to a substrate with an efficiently recognized secondary site. Our results indicate that two different forms of LHCP can be produced with distinct NH2-termini by selective cleavage of a single precursor polypeptide.  相似文献   

13.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

14.
The complete amino acid sequence of a DNA- and heparin-binding domain isolated by limited thermolysin digestion of human plasma fibronectin has been obtained. The domain contains 90 amino acids with a calculated molecular weight of 10,225. The apparent molecular mass of this domain is 14 kDa when analyzed by sodium dodecyl sulfate-gel electrophoresis. The anomalously high molecular size estimation may be due to the inaccuracy of this method in the low range. The structure was established from microsequence analysis of the chymotryptic, tryptic, and Staphylococcus aureus protease peptides. The molecular ion of each of the chymotryptic peptides was obtained by fast atom bombardment mass spectrometry. The domain has a preponderance of basic residues with a net charge of +5 at neutral pH. The basic nature of the domain may account for its affinity for the polyanions, DNA and heparin. The predicted secondary structure is beta-sheet, in common with all of the type III internal sequence homology structures obtained for fibronectin so far. The location of the domain in fibronectin was made possible by limited thermolysin digestion and identification of the fragments and by comparison of the sequence of the 14-kDa fragment with the partial structure of bovine plasma fibronectin. The domain comprises residues 585-675 and defines a region immediately adjacent to the collagen-binding domain. Numbering domains beginning at the amino terminus, this domain is Domain III after the fibrin/heparin/actin/S. aureus binding Domain I and the collagen-binding Domain II. The domain was obtained from a larger precursor (56 kDa) which bound heparin, DNA, and gelatin. Further digestion of the 56-kDa fragment gave rise to a 40-kDa fragment which only bound gelatin, and a 14-kDa fragment which only bound heparin or DNA. The 14-kDa fragment (Domain III) marks the beginning of the type III homology region in fibronectin, for there may be up to 15 repeats of 90 amino acids. The size of this domain corresponds to one repeat of 90 amino acids and it has some sequence homology to the other type III sequences found thus far in fibronectin.  相似文献   

15.
Bacillus sphaericus 2362 produces a binary toxin consisting of 51- and 42-kDa proteins, both of which are required for toxicity to mosquito larvae. Upon ingestion by larvae, these proteins are processed to 43 and 39 kDa, respectively. Using site-directed mutagenesis, we have obtained N- and C-terminal deletions of the 51-kDa protein and expressed them in B. subtilis by using the subtilisin promoter. Removal of 21 amino acids from the N terminus and 53 amino acids from the C terminus resulted in a protein with the same electrophoretic properties as the 43-kDa degradation product which accumulates in the guts of mosquito larvae. This protein was toxic only in the presence of the 42-kDa protein. A deletion of 32 amino acids at the N terminus combined with a 53-amino-acid deletion at the C terminus resulted in a protein which retained toxicity. Toxicity was lost upon a further deletion of amino acids at potential chymotrypsin sites (41 at the N terminus, 61 at the C terminus). Comparison of the processing of the 51- and the 42-kDa proteins indicated that in spite of their sequence similarity proteolysis occurred at different sites.  相似文献   

16.
We examined the biosynthesis and post-translational processing of the brain-derived neurotrophic factor precursor (pro-BDNF) in cells infected with a pro-BDNF-encoding vaccinia virus. Metabolic labeling, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis reveal that pro-BDNF is generated as a 32-kDa precursor that is N-glycosylated and glycosulfated on a site, within the pro-domain. Some pro-BDNF is released extracellularly and is biologically active as demonstrated by its ability to mediate TrkB phosphorylation. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa). Small amounts of a 28-kDa protein that is immunoprecipitated with BDNF antibodies is also evident. This protein is generated in the endoplasmic reticulum through N-terminal cleavage of pro-BDNF at the Arg-Gly-Leu-Thr(57)- downward arrow-Ser-Leu site. Cleavage is abolished when Arg(54) is changed to Ala (R54A) by in vitro mutagenesis. Blocking generation of 28-kDa BDNF has no effect on the level of mature BDNF and blocking generation of mature BDNF with alpha(1)-PDX, an inhibitor of furin-like enzymes, does not lead to accumulation of the 28-kDa form. These data suggest that 28-kDa pro-BDNF is not an obligatory intermediate in the formation of the 14-kDa form in the constitutive secretory pathway.  相似文献   

17.
The main somatostatin-degrading proteases were purified from rat and pig brain homogenates and characterized as thiol- and metal-dependent endoproteases. Two types of proteases with apparent native and subunit molecular masses of 70 kDa and 68 kDa could be differentiated in both species. Beside somatostatin, both hydrolyzed several other neuropeptides with chain lengths between 8 and 30 amino acid residues. Cleavage sites were generally similar or identical, but some clear exceptions were observed for enzymes from both species which could be used to differentiate between the two proteases. The 68-kDa protease cleaved somatostatin at three bonds (Asn5-Phe6, Phe6-Phe7 and Thr10-Phe11) and neurotensin only at the Arg8-Arg9 bond, whereas the 70-kDa protease digested somatostatin at only two bonds (Phe6-Phe7 and Thr10-Phe11) and neurotensin as well as acetylneurotensin-(8-13) additionally (pig protease) or almost exclusively (rat protease) at the Pro10-Tyr11 bond. Relative rates for the digestions of various peptides were, however, more dependent on the species than on the type of protease. Cleavage sites for angiotensin II, bradykinin, dynorphin, gonadoliberin and substance P were, apart from different rates, identical for both proteases. In both species the 68-kDa protease was found to be mainly, but not exclusively, soluble and not membrane-associated, whereas the inverse was detected for the 70-kDa protease. Based on distinct molecular and catalytic properties, the 68-kDa protease is supposed to be congruent with the endopeptidase 24.15 (EC 3.4.24.15), the 70-kDa protease with endopeptidase 24.16 (EC 3.4.24.16, neurotensin-degrading endopeptidase). This investigation demonstrates that both proteases hydrolyze various neuropeptides with similar cleavage sites, but with species-dependent activity. Species-independent distinctions are the exclusive action of endopeptidase 24.16 on acetylneurotensin-(8-13) and liberation of free Phe from somatostatin only by endopeptidase 24.15.  相似文献   

18.
Abstract— The levels of the amino acids glycine, aspartic acid and glutamic acid were determined in the ganglia and in identified neurons of A. californica. All of the determinations were done by gas chromatography–mass spectrometry–selected ion monitoring using deuterium-labelled amino acids as internal standards. Aspartate and glutamate concentrations vary 2- to 3-fold among the ganglia and individual neurons. Glycine levels are 3–10 times higher in the abdominal ganglion than in the other ganglia. This is in large part due to the glycine concentrations in the abdominal ganglion neurons R3–R14 being about 20 times higher than in the somata of most other Aplysia neurons. The concentrations of all three amino acids are several times lower in the muscle than in ganglia, and orders of magnitude lower in the hemolymph than in tissue.  相似文献   

19.
The cDNA sequence encoding the CP2 neuropeptide precursor is identified and encodes a single copy of the neuropeptide that is flanked by appropriate processing sites. The distribution of the CP2 precursor mRNA is described and matches the CP2-like immunoreactivity described previously. Single cell RT-PCR independently confirms the presence of CP2 precursor mRNA in selected neurons. MALDI-TOF MS is used to identify additional peptides derived from the CP2 precursor in neuronal somata and nerves, suggesting that the CP2 precursor may give rise to additional bioactive neuropeptides.  相似文献   

20.
Neuropeptides are an important class of signaling molecules that result from complex and variable posttranslational processing of precursor proteins and thus are difficult to identify based solely on genomic information. Bioinformatics prediction of precursor cleavage sites can support effective biochemical characterization of neuropeptides. Neuropeptide cleavage models were developed using comprehensive human, mouse, rat, and cattle precursor data sets and used to compare predicted neuropeptide processing across these species. Logistic regression and artificial neural network models were used to predict cleavages based on amino acid and physiochemical properties of amino acids at precursor sequence locations proximal to cleavage. Correct cleavage classification rates across species and models ranged from 85% to 100%, suggesting that amino acid and amino acid properties have major impact on the probability of cleavage and that these factors have comparable effects in human, mouse, rat, and cattle. The variable accuracy of each species-specific model to predict cleavage sites indicated that there are species- and precursor-specific processing patterns. Prediction of mouse cleavages using rat models was highly accurate, yet the reverse was not observed. Sensitivity and specificity revealed that logistic models are well suited to maximize the rate of true noncleavage predictions with moderate rates of true cleavage predictions; meanwhile, artificial neural networks maximize the rate of true cleavage predictions with moderate to low true noncleavage predictions. Logistic models also provided insights into the strength of the amino acid associations with cleavage. Prediction of neuropeptide cleavage sites using human, mouse, rat, and cattle models are available at . Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Allison Tegge and Bruce Southey contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号