首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Productive engagement of TCR results in delivering signals required for T cell proliferation as well as T cell survival. Blocking TCR-mediated survival signals, T cells undergo apoptosis instead of proliferation upon TCR stimulation. During the activation process, T cells produce IL-2, which acts as an extrinsic survival factor. In addition, TCR stimulation results in up-regulation of Bcl-xL to enhance T cell survival intrinsically. We show in this study that protein kinase C (PKC)-theta is required for enhancing the survival of activated CD4+ T cells by up-regulating Bcl-xL. In response to TCR stimulation, CD4+ PKC-theta-/- T cells failed to up-regulate Bcl-xL, and underwent accelerated apoptosis via a caspase- and mitochondria-dependent pathway. Similar to PKC-theta-deficient primary CD4+ T cells, small interfering RNA-mediated knockdown of PKC-theta in Jurkat cells also resulted in apoptosis upon TCR stimulation. Forced expression of Bcl-xL was sufficient to inhibit apoptosis observed in PKC-theta knockdown cells. Furthermore, ectopic expression of PKC-theta stimulated a reporter gene driven by a mouse Bcl-xL promoter. Whereas an inactive form of PKC-theta or knockdown of endogenous PKC-theta led to inhibition of Bcl-xL reporter. PKC-theta-mediated activation of Bcl-xL reporter was inhibited by dominant-negative IkappaB kinase beta or dominant-negative AP-1. Thus, the PKC-theta-mediated signals may function not only in the initial activation of naive CD4+ T cells, but also in their survival during T cell activation by regulating Bcl-xL levels through NF-kappaB and AP-1 pathways.  相似文献   

3.
4.
Activation of T lymphocytes requires protein kinase C theta (PKC-theta) and an appropriately elevated free intracellular Ca2+ concentration ([Ca2+]i). Here, we show that phorbol 12 myristate 13-acetate (PMA) inhibited Ca2+ influx in wild-type but not PKC-theta-/- T cells, suggesting that PKC-theta plays a role in PMA-mediated inhibition of Ca2+ influx. In contrast, T cell receptor (TCR) crosslinking in the same PKC-theta-/- T cells did result in significantly decreased [Ca2+]i compared to wild-type T cells, suggesting a positive role for PKC-theta in TCR-mediated Ca2+ mobilization. In PKC-theta-/- mice, peripheral mature T cells, but not developing thymocytes, displayed significantly decreased TCR-induced Ca2+ influx and nuclear factor of activated T cells (NFAT) translocation upon sub-optimal TCR crosslinking. The decreased intracellular free Ca2+ was due to changes in Ca2+ influx but not efflux, as observed in extracellular and intracellular Ca2+ mobilization studies. However, these differences in Ca2+ influx and nuclear factor of activated T cells (NFAT) translocation disappeared with increasing intensity of TCR crosslinking. The enhancing effect of PKC-theta on Ca2+ influx is not only dependent on the strength of TCR crosslinking but also on the developmental stage of T cells. The underlying mechanism involved phospholipase Cgamma1 activation and inositol triphosphate production. Furthermore, knockdown of endogenous PKC-theta expression in Jurkat cells resulted in significant inhibition of TCR-induced activation of NFAT, as evidenced from NFAT reporter studies. Forced expression of a constitutively active form of calcineurin in PKC-theta-/- Jurkat cells could readily overcome the above inhibition. Thus, PKC-theta can both positively and negatively regulate the Ca2+ influx that is critical for NFAT activity.  相似文献   

5.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

6.
7.
Cytokine production upon T cell activation results from the integration of multiple signaling pathways from TCR/CD3 and from costimulatory molecules such as CD28. Among these pathways, the possible role of p38 mitogen activated protein kinase (MAPK) is the least understood. Here, we used a highly specific p38 MAPK inhibitor, the SB203580 compound, to examine the role of this enzyme in the induction of various cytokines in human T cells stimulated with anti-CD3 and anti-CD28 mAb together or in combination with PMA. Cytokine induction was monitored by ELISA and at the mRNA level. While SB203580 had little effect on IL-2 production and proliferation, it significantly reduced the production of several other cytokines. The secretion of IL-4, IL-5, IL-13, and TNF-alpha was inhibited by 20-50% with modes of T cell activation involving the CD28 pathway, whereas their mRNA expression was little affected. In contrast, IFN-gamma induction via CD28/PMA or CD3/CD28, but not CD3/PMA, was markedly diminished both at the protein and at the mRNA levels. Most interestingly, SB203580 also suppressed IL-10 secretion and mRNA induction via CD28-dependent activation by 75-85% (IC50 approximately 0.2 microM). Subset analysis suggested that this inhibition did not reflect a differential effect on T cell subsets. Therefore, p38 MAPK activity appears to contribute to cytokine production, mostly via CD28-dependent signaling. Moreover, IL-10 seems to rely more on this activity than other cytokines for its induction in T cells.  相似文献   

8.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiomyocytes. Both necessary and sufficient roles have been described for the mitogen activated protein kinase(1) (MAPK) signaling pathway, specific protein kinase C (PKC) isoforms, and calcineurin. Here we investigate the interdependence between calcineurin, MAPK, and PKC isoforms in regulating cardiomyocyte hypertrophy using three separate approaches. Hearts from hypertrophic calcineurin transgenic mice were characterized for PKC and MAPK activation. Transgenic hearts demonstrated activation of c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2), but not p38 MAPK factors. Calcineurin transgenic hearts demonstrated increased activation of PKCalpha, beta(1), and theta, but not of epsilon, beta(2), or lambda. In a second approach, cultured cardiomyocytes were infected with a calcineurin adenovirus to induce hypertrophy and the effects of pharmacologic inhibitors or co-infection with a dominant negative adenovirus were examined. Calcineurin-mediated hypertrophy was prevented with PKC inhibitors, Ca(2+) chelation, and attenuated with a dominant negative SEK-1 (MKK4) adenovirus, but inhibitors of ERK or p38 activation had no effect. In a third approach, we examined the activation of MAPK factors and PKC isoforms during the progression of load-induced hypertrophy in aortic banded rats with or without cyclosporine. We determined that inhibition of calcineurin activity with cyclosporine prevented PKCalpha, theta, and JNK activation, but did not affect PKCepsilon, beta, lambda, ERK1/2, or p38 activation. Collectively, these data indicate that calcineurin hypertrophic signaling is interconnected with PKCalpha, theta, and JNK in the heart, while PKCepsilon, beta, lambda, p38, and ERK1/2 are not involved in calcineurin-mediated hypertrophy.  相似文献   

9.
10.
11.
Initiation of T lymphocyte responses to most Ags requires concurrent stimulation through the TCR and costimulatory receptors such as CD28. Following initial activation, secondary receptors are up-regulated that can costimulate T cells in concert with TCR engagement. One such receptor is the TNFR family member CD30. In this study, we report that unlike CD28, ligation of CD30 on normal effector T cells induces IL-13 production in the absence of concurrent TCR engagement. TCR-independent CD30-mediated IL-13 release correlated with activation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), and NF-kappaB, and was completely inhibited by the expression of a TNFR-associated factor 2 (TRAF2) dominant-negative transgene (TRAF2.DN-Tg), but not by that of an I-kappaBalpha dominant-negative transgene. In parallel, expression of the TRAF2.DN-Tg selectively prevented the induction of c-Jun N-terminal kinase and p38 MAPK, but not that of NF-kappaB. Furthermore, IL-13 production was reduced in a dose-dependent manner by the p38 MAPK inhibitor SB203580. Together, these results suggest that TCR-independent CD30-mediated production of IL-13 is triggered by association of CD30 with TRAF family members and subsequent activation of p38 MAPK. Inasmuch as IL-13 can promote airway inflammation and cancer progression, production of IL-13 in a TCR-independent manner has important pathological implications in vivo.  相似文献   

12.
The c-Jun N-terminal kinase (JNK) can be activated in T-cells either by the combination of TCR and CD28 costimulation or by a variety of stress-related stimuli including UV light, H(2)O(2), and hyperosmolar sorbitol solutions. In T-lymphocytes, TCR/CD28 stimulation of JNK leads to induction of new gene expression via c-Jun, ATF-2, and Elk-1. Phosphorylation of c-Jun in CD4(+) T-cells stimulated by CD3/CD4/CD28 cross-linking declines with age, due to diminished activation of JNK. Here we show that the age-related decline in TCR/CD28 activation of JNK reflects two effects of age: the accumulation of memory cells (in which JNK stimulation is poor regardless of donor age) and age-dependent declines in JNK activation within the naive subset. Cyclosporin A inhibits induction of JNK function by TCR/CD28, PMA/ionomycin, ceramide, or H(2)O(2), but not induction by UV light or hyperosmolar sorbitol. Although aging impairs JNK induction by UV light, it has no effect on JNK activation by ceramide, H(2)O(2), or sorbitol. The data as a whole indicate that there are at least four pathways that activate JNK in CD4(+) T-cells, of which two are age-sensitive and two others unaffected by aging. Two of the pathways (UV and hyperosmolar sorbitol) are insensitive to cyclosporin inhibition. Finally, we show that the alterations in JNK function are not due to changes in the expression of MKK4, an upstream activator of JNK, and that another JNK kinase, MKK7, is not expressed in splenic T-cells.  相似文献   

13.
CD28 provides important signals that lower the threshold of T cell activation, augment the production of IL-2, and promote T cell survival. The recent identification of a second family of costimulatory molecules within the TNFR family has reshaped the "two-signal" model of T cell activation. In this study the role of p75 as a T cell costimulatory molecule in controlling cell fate during TCR/CD28-mediated stimulation was examined. We found that p75-deficient T cells possess a profound defect in IL-2 production in response to TCR/CD28-mediated stimulation. Examination of key signaling intermediates revealed that TCR proximal events such as global tyrosine phosphorylation and ZAP70 phosphorylation, as well as downstream MAPK cascades are unperturbed in p75-deficient T cells. In contrast, p75 is nonredundantly coupled to sustained AKT activity and NF-kappaB activation in response to TCR/CD28-mediated stimulation. Moreover, p75-deficient T cells possess a defect in survival during the early phase of T cell activation that is correlated with a striking defect in Bcl-x(L) expression. These data indicate discrete effects of p75 on the intracellular signaling milieu during T cell activation, and reveal the synergistic requirement of TCR, CD28, and p75 toward optimal IL-2 induction and T cell survival. We propose that p75 acts as one of the earliest of the identified costimulatory members of the TNFR family, and is functionally linked to CD28 for initiating and determining T cell fate during activation.  相似文献   

14.
Untransformed CD4(+) Th1 cells stimulated with Ag and APC demonstrated a dependence on B7- and CD28-mediated costimulatory signals for the expression and function of AP-1 proteins. The induction of transactivation by the c-fos gene regulator Elk-1 mirrored this requirement for TCR and CD28 signal integration. c-Jun N-terminal kinase (JNK) (but not extracellular signal-regulated kinase or p38) protein kinase activity was similarly inhibited by neutralizing anti-B7 mAbs. Blockade of JNK protein kinase activity with SB 202190 prevented both Elk-1 transactivation and c-Fos induction. These results identify a unique role for B7 costimulatory molecules and CD28 in the activation of JNK during Ag stimulation in Th1 cells, and suggest that JNK regulates Elk-1 transactivation at the c-fos gene to promote the formation of AP-1 complexes important to IL-2 gene expression.  相似文献   

15.
Studies in Jurkat cells have shown that combined stimulation through the TCR and CD28 is required for activation of c-Jun N-terminal kinase (JNK), suggesting that JNK activity may mediate the costimulatory function of CD28. To examine the role of JNK signaling in CD28 costimulation in normal T cells, murine T cell clones and CD28(+/+) or CD28(-/-) TCR transgenic T cells were used. Although ligation with anti-CD28 mAb augmented JNK activation in Th1 and Th2 clones stimulated with low concentrations of anti-CD3 mAb, higher concentrations of anti-CD3 mAb alone were sufficient for JNK activation even in the absence of anti-CD28. JNK activity was comparably induced in both CD28(+/+) and CD28(-/-) 2C/recombinase-activating gene 2(RAG2)(-/-) T cells stimulated with anti-CD3 mAb alone, and with L(d)/peptide dimers, a direct alphabeta TCR ligand. Moreover, JNK activation was also detected in 2C/RAG2(-/-) T cells stimulated with P815 cells that express the relevant alloantigen L(d) whether or not B7-1 was coexpressed. However, IL-2 production by both Th1 clones and CD28(+/+) 2C/RAG2(-/-) T cells was detected only upon TCR and CD28 coengagement. Thus, CD28 coligation is not necessary, and stimulation through the TCR is sufficient, for JNK activation in normal murine T cells. The concept that JNK mediates the costimulatory function of CD28 needs to be reconsidered.  相似文献   

16.
17.
18.
19.
Stimulation of an IL-2-dependent variant of the Th2 clone D10.G4.1 with antibodies (Ab) specific for CD3 epsilon or the TCR-alpha beta caused either activation of the clone to secrete the autocrine lymphokine IL-4, or lethal activation in which the cells secreted high quantities of IL-4 but then died within 2 days. High densities of immobilized Ab delivered a lethal signal, whereas soluble forms of Ab and low densities of immobilized Ab caused productive activation in which cell viability was maintained. Lethal activation was not prevented by accessory cells, IL-1, or IL-2, or by co-cross-linkage of CD4 and TCR. The lethal signal was not mediated via a soluble effector from the activated cells. Lethal signaling was insensitive to cyclosporin A or dexamethasone. Studies with activators of protein kinase C (PKC), and PKC inhibitors, indicated that direct activation of PKC was not sufficient for lethal signaling. Nor could direct activation of PKC prevent the lethal signal. The lethal signal was not caused by Ca2+ mobilization mediated by Ca2+ ionophore and there was no evidence of apoptosis. The combination of a PKC activator and Ca2+ ionophore was not lethal, thereby showing that together these events are not sufficient. That these signal pathways were not necessary for lethal activation was evidenced by their inability to lower the density of immobilized anti-CD3 required to cause cell death. In this model, ligation of the TCR specifically activates a Ca2+/PKC-independent lethal signal transduction pathway.  相似文献   

20.
We have previously established subclones from human leukemia-derived HSB.2 cell line that produced high levels of interleukin (IL) 2 when stimulated with phytohemagglutinin (PHA) and IL-1. Herein, we investigated the signal requirement for IL-2 production, particularly concerning the role of IL-1 in this system. PHA but not IL-1 rendered marked protein kinase C (PKC) activation and IL-2 production induced by PHA plus IL-1 was totally abrogated by a potent PKC inhibitor, H-7. Concomitantly, PHA alone caused marked Ca2+ influx, whereas IL-1 neither induced Ca2+ influx nor augmented PHA-induced Ca2+ influx. As expected, a signal delivered by PHA could be substituted by phorbol 12-myristate 13-acetate (PMA) and ionomycin while IL-1 was still indispensable, indicating that at least three signals, i.e., those delivered by IL-1 as well as PKC activation and Ca2+ influx were required for optimal IL-2 production. Kinetic study indicated that while PMA and ionomycin should be added at the initiation of culture, delayed addition of IL-1 up to 4 hr later induced even higher levels of IL-2 production, demonstrating the requirement for IL-1 after PKC activation and Ca2+ influx. In this system, it was revealed that IL-1 was not involved in PKC activation, Ca2+ influx, and breakdown of phosphatidylinositols. Whereas PMA, ionomycin, and IL-1 stimulated high levels of IL-2 production, those combinations of signals did not induce breakdown of phosphatidylinositols. It should be noted that IL-2 production induced by these three signals seemed to bypass hydrolysis of phosphatidylinositols in contrast to PHA plus IL-1 stimulation that was accompanied with a marked breakdown of phosphatidylinositols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号