首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of a maize G-box binding factor that is induced by hypoxia   总被引:10,自引:0,他引:10  
G-box cis-acting DNA sequence elements are present in the promoter region of a number of signal-inducible plant genes. In many cases this motif is essential for gene expression. Maize nuclear extracts contain a protein complex that binds specifically to the G-box sequence. Previously, a protein called GF14 was described that is physically associated with the G-box binding complex, but is not a DNA-binding factor in and of itself. This paper reports the isolation of a cDNA encoding a maize G-box binding factor (GBF). The deduced amino acid sequence indicates that maize GBF1 is a basic region-leucine zipper protein. GBF1 binds to the G-box element with specificity similar to that of the binding activity in nuclear extracts. Furthermore, maize GBF1 and the factor detected in nuclear extract are identical in their molecular weight and are immunologically related. GBF1 mRNA accumulates rapidly in hypoxically induced maize cells prior to the increase in Adh1 mRNA levels. Taken together with results that indicate that GBF1 binds to the hypoxia-responsive promoter of maize Adh1, these observations suggest that GBF1 may be one of the factors involved in the activation of Adh1.  相似文献   

2.
The promoters of a variety of plant genes are characterized by the presence of a G-box (CCACGTGG) or closely related DNA motifs. These genes often exhibit quite diverse expression characteristics and in many cases the G-box sequence has been demonstrated to be essential for expression. The G-box of the Arabidopsis rbcS-1A gene is bound by a protein, GBF, identified in plant nuclear extracts. Here we report the isolation of three Arabidopsis thaliana cDNA clones encoding GBF proteins referred to as GBF1, GBF2 and GBF3. GBF1 and GBF2 mRNA is present in light and dark grown leaves as well as in roots. In contrast, GBF3 mRNA is found mainly in dark grown leaves and in roots. The deduced amino acid sequences of the three cDNAs indicate that each encodes a basic/leucine zipper protein. In addition, all three proteins are characterized by an N-terminal proline-rich domain. Homodimers of the three proteins specifically recognize the G-box motif, with GBF1 and GBF3 binding symmetrically to this palindromic sequence. In contrast, GBF2 binds to the symmetrical G-box sequence in such a way that the juxtaposition of the protein and the DNA element is clearly asymmetric and hence distinct from that observed for the other two proteins. The fact that GBF1, GBF2 and GBF3 possess both distinct DNA binding properties and expression characteristics prompt us to entertain the notion that these proteins may individually mediate distinct subclasses of expression properties assigned to the G-box. Furthermore, we demonstrate that GBF1, GBF2 and GBF3 heterodimerize and these heterodimers also interact with the G-box, suggesting a potential mechanism for generating additional diversity from these GBF proteins.  相似文献   

3.
4.
To study the phosphorylation of one of the G-box binding factors from Arabidopsis (GBF1), we have obtained large amounts of this protein by expression in Escherichia coli. Bacterial GBF1 was shown to be phosphorylated very efficiently by nuclear extracts from broccoli. The phosphorylation activity was partially purified by chromatography on heparin-Sepharose and DEAE-cellulose and was characterized. It showed the essential features of casein kinase II activity: utilization of GTP in addition to ATP as a phosphate donor, strong inhibition by heparin, preference for acidic protein substrates, salt-induced binding to phosphocellulose, and salt-dependent deaggregation. The very low Km value for GBF1 (220 nM compared to approximately 10 microM for casein) was in the range observed for identified physiological substrates of casein kinase II. Phosphorylation of GBF1 resulted in stimulation of the G-box binding activity and formation of a slower migrating protein-DNA complex. The conditions of this stimulatory reaction fully corresponded to the properties of casein kinase II, in particular its dependence on the known phosphate donors. The DNA binding activity of the endogenous plant GBF was shown to be reduced by treatment with calf alkaline phosphatase; this reduction was diminished by addition of fluoride and phosphate or incubation in the presence of casein kinase II and ATP.  相似文献   

5.
The G-box is an important regulatory element found in the promoters of many different genes. Four members of an Arabidopsis gene family encoding basic leucine zipper proteins (GBFs) which bind the G-box have previously been cloned. To study GBFs, a polyclonal antibody was raised against GBF1 expressed in bacteria. This antibody also recognized GBF2 and GBFS. Immunoblot analysis of nuclear and cytoplasmic fractions from Arabidopsis and soybean (SB-M) cell cultures indicated that over 90% of proteins detected with anti-GBF1 were cytoplasmic. Electrophoretic mobility shift assays indicated that over 90% of G-box binding activity was cytoplasmic. DMA affinity chromatography demonstrated that each protein detected with anti-GBF1 specifically bound the G-box. To study individual GBFs, DNA constructs fusing GBF1, GBF2 and GBF4 to GUS were made and assayed by transient expression in SB-M protoplasts. Of GUS:GBF1 proteins, 50–62% were localized in the cytoplasm under all conditions tested, while 97% of GUS:GBF4 was localized in the nucleus. By contrast, whereas about 50% of GUS:GBF2 was found in the cytoplasm of dark-grown cells, over 80% of this protein was found in the nucleus in cells cultured under blue light. Deletion analysis of GBF1 identified a region between amino acids 112 and 164 apparently required for cytoplasmic retention. These results suggest the intriguing possibility that limitation of nuclear access may be an important control on GBF activity. In particular, GBF2 is apparently specifically imported into the nucleus in response to light.  相似文献   

6.
7.
8.
9.
Regulatory elements containing the sequence ACGT are found in several plant promoters and are recognized by various basic/leucine zipper (bZIP) proteins. The Arabidopsis G-box binding factor 1 (GBF1), initially identified by its ability to bind to the palindromic G-box (CCACGTGG), also interacts with the TGACGT motif if this hexamer sequence is followed by either the dinucleotide GG--as found in the Hex motif of the wheat histone 3 promoter--or GT. Here we describe the isolation of an Arabidopsis bZIP protein, denoted TGA1, that also recognizes ACGT-containing sequences. However, TGA1 differs from members of the GBF family in the spectrum of base pair permutations flanking the ACGT sequence that are required for DNA binding. TGA1 primarily requires a TGACG motif and preferentially binds to those pentamers that are followed by a T residue. We show that although both TGA1 and GBF1 bind to the Hex motif (TGACGTGG), this binding can be distinguished on the basis of their specific DNA-protein contacts. Furthermore, TGA1 also differs from members of the GBF family in that it apparently does not form heterodimers with any member of this family.  相似文献   

10.
Characterization of the Arabidopsis Adh G-box binding factor.   总被引:16,自引:4,他引:12       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
15.
16.
G Lu  P C Sehnke    R J Ferl 《The Plant cell》1994,6(4):501-510
Arabidopsis GF14 omega was originally described because of its apparent association with a DNA-protein complex; it is a member of the 14-3-3 kinase regulatory protein family that is conserved throughout eukaryotes. Here, we demonstrated that recombinant GF14 omega is expressed in Escherichia coli as a dimer. Blot binding and electrophoretic mobility shift analyses indicated that GF14 omega binds calcium. Equilibrium dialysis further demonstrated that GF14 omega binds an equimolar amount of calcium with an apparent binding constant of 5.5 x 10(4) M-1 under physiological conditions. The C-terminal domain, which contains a potential EF hand motif, is responsible for the calcium binding. The C-terminal domain also cross-reacted with the anti-GF14 omega monoclonal antibody. In addition, GF14 omega is phosphorylated by Arabidopsis protein kinase activity at a serine residue(s) in vitro. Therefore, GF14 omega protein has biochemical properties consistent with potential signaling roles in plants. The presence of a potential EF hand-like motif in the highly conserved C terminus of 14-3-3 proteins together with the calcium-dependent multiple functions attributed to the 14-3-3 proteins indicate that the C terminus EF hand is a common functional element of this family of proteins.  相似文献   

17.
18.
19.
Several promoter elements have previously been shown to influence the expression of the cab-E gene in Nicotiana plumbaginifolia. Here we demonstrate, by electrophoretic mobility shift and methylation interference assays, that a complex pattern of protein-DNA interactions characterizes this promoter. Among the multiple proteins identified, we focused on five different factors which either occupied important regulatory elements and/or were present in relatively large amounts in nuclear extracts. All of these proteins were distinguished on the basis of their recognition sequence and other biochemical parameters. One, GBF, interacted with a single sequence within the cab-E promoter homologous to the G-box found in many photoregulated and other plant promoters. A second factor, GA-1, bound to the GATA element which is located between the CAAT and TATA boxes of the cab-E and all other LHCII Type I CAB promoters. GA-1 also interacted in vitro with the I-boxes of the Arabidopsis rbcS-1A promoter and the as-2 site of the CaMV 35S promoter. Two other factors, GC-1 and AT-1, bound to multiple recognition sites localized within the GC-rich and AT-rich elements, respectively. GT-1, a protein which interacts with promoters of other light-regulated genes, bound to seven distinct sites distributed throughout the cab-E promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号