首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although figures in scientific articles have high information content and concisely communicate many key research findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those that do not typically only consider caption text. This study describes and evaluates a fully automated approach for associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most accurate method has an F1-score of 69% on a cross-validation experiment, is competitive with the accuracy of human experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users find our system beneficial. The system is available at http://FigureItOut.askHERMES.org.  相似文献   

2.
Yu H  Liu F  Ramesh BP 《PloS one》2010,5(10):e12983

Background

Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery.

Methodology/Findings

We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers'' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation.

Conclusion/Significance

The evaluation results conclude that automatic figure ranking and user interfacing as we reported in this study can be fully implemented in online publishing. The novel user interface integrated with the automatic figure ranking system provides a more efficient and robust way to access scientific information in the biomedical domain, which will further enhance our existing figure search engine to better facilitate accessing figures of interest for bioscientists.  相似文献   

3.

Background  

With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE? abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine.  相似文献   

4.

Background  

The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles.  相似文献   

5.

Background:

The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing.

Results:

We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task, based on the main steps of a manual protein interaction annotation workflow. It was structured into four distinct subtasks related to: (a) detection of protein interaction-relevant articles; (b) extraction and normalization of protein interaction pairs; (c) retrieval of the interaction detection methods used; and (d) retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt, a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best summarized a given interaction, implying that many of the automatically extracted ones could contain interaction information but did not correspond to the most informative sentences.

Conclusion:

The BioCreative II PPI task is the first attempt to compare the performance of text-mining tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and then linking them to their database records. Some limitations were also encountered when using a single (and possibly incomplete) reference database for protein normalization or when limiting search for interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant) and previously known interactions adds additional complexity to these tasks.
  相似文献   

6.
BioRAT: extracting biological information from full-length papers   总被引:2,自引:0,他引:2  
MOTIVATION: Converting the vast quantity of free-format text found in journals into a concise, structured format makes the researcher's quest for information easier. Recently, several information extraction systems have been developed that attempt to simplify the retrieval and analysis of biological and medical data. Most of this work has used the abstract alone, owing to the convenience of access and the quality of data. Abstracts are generally available through central collections with easy direct access (e.g. PubMed). The full-text papers contain more information, but are distributed across many locations (e.g. publishers' web sites, journal web sites and local repositories), making access more difficult. In this paper, we present BioRAT, a new information extraction (IE) tool, specifically designed to perform biomedical IE, and which is able to locate and analyse both abstracts and full-length papers. BioRAT is a Biological Research Assistant for Text mining, and incorporates a document search ability with domain-specific IE. RESULTS: We show first, that BioRAT performs as well as existing systems, when applied to abstracts; and second, that significantly more information is available to BioRAT through the full-length papers than via the abstracts alone. Typically, less than half of the available information is extracted from the abstract, with the majority coming from the body of each paper. Overall, BioRAT recalled 20.31% of the target facts from the abstracts with 55.07% precision, and achieved 43.6% recall with 51.25% precision on full-length papers.  相似文献   

7.
MOTIVATION: Full-text documents potentially hold more information than their abstracts, but require more resources for processing. We investigated the added value of full text over abstracts in terms of information content and occurrences of gene symbol--gene name combinations that can resolve gene-symbol ambiguity. RESULTS: We analyzed a set of 3902 biomedical full-text articles. Different keyword measures indicate that information density is highest in abstracts, but that the information coverage in full texts is much greater than in abstracts. Analysis of five different standard sections of articles shows that the highest information coverage is located in the results section. Still, 30-40% of the information mentioned in each section is unique to that section. Only 30% of the gene symbols in the abstract are accompanied by their corresponding names, and a further 8% of the gene names are found in the full text. In the full text, only 18% of the gene symbols are accompanied by their gene names.  相似文献   

8.
ABSTRACT: BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides avaluable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications.  相似文献   

9.
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/.  相似文献   

10.
Histochemistry provides the unique opportunity to detect single molecules in the very place where they exert their structural roles or functional activities: this makes it possible to correlate structural organization and function, and may be fruitfully exploited in countless biomedical research topics. Aiming to estimate the impact of histochemical articles in the biomedical field, the last few years citations of articles published in a long-established histochemical journal have been considered. This brief survey suggests that histochemical journals, especially the ones open to a large spectrum of research subjects, do represent an irreplaceable source of information not only for cell biologists, microscopists or anatomists, but also for biochemists, molecular biologists and biotechnologists.Key words: Basic and applied histochemistry, Biomedical research  相似文献   

11.
12.
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations.  相似文献   

13.
MOTIVATION: Many biomedical projects would benefit from reducing the time and expense of in vitro experimentation by using computer models for in silico predictions. These models may help determine which expensive biological data are most useful to acquire next. Active Learning techniques for choosing the most informative data enable biologists and computer scientists to optimize experimental data choices for rapid discovery of biological function. To explore design choices that affect this desirable behavior, five novel and five existing Active Learning techniques, together with three control methods, were tested on 57 previously unknown p53 cancer rescue mutants for their ability to build classifiers that predict protein function. The best of these techniques, Maximum Curiosity, improved the baseline accuracy of 56-77%. This article shows that Active Learning is a useful tool for biomedical research, and provides a case study of interest to others facing similar discovery challenges.  相似文献   

14.

Background:

We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks.

Results:

Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages.

Conclusion:

Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
  相似文献   

15.
BioText Search Engine: beyond abstract search   总被引:1,自引:0,他引:1  
The BioText Search Engine is a freely available Web-based application that provides biologists with new ways to access the scientific literature. One novel feature is the ability to search and browse article figures and their captions. A grid view juxtaposes many different figures associated with the same keywords, providing new insight into the literature. An abstract/title search and list view shows at a glance many of the figures associated with each article. The interface is carefully designed according to usability principles and techniques. The search engine is a work in progress, and more functionality will be added over time. Availability: http://biosearch.berkeley.edu.  相似文献   

16.
Yale Image Finder (YIF) is a publicly accessible search engine featuring a new way of retrieving biomedical images and associated papers based on the text carried inside the images. Image queries can also be issued against the image caption, as well as words in the associated paper abstract and title. A typical search scenario using YIF is as follows: a user provides few search keywords and the most relevant images are returned and presented in the form of thumbnails. Users can click on the image of interest to retrieve the high resolution image. In addition, the search engine will provide two types of related images: those that appear in the same paper, and those from other papers with similar image content. Retrieved images link back to their source papers, allowing users to find related papers starting with an image of interest. Currently, YIF has indexed over 140 000 images from over 34 000 open access biomedical journal papers. AVAILABILITY: http://krauthammerlab.med.yale.edu/imagefinder/  相似文献   

17.

Background

Postural instability and gait disability threaten the independence and well-being of people with Parkinson’s disease and increase the risk of falls and fall-related injuries. Prospective research has shown that commonly-used clinical assessments of balance and walking lack the sensitivity to accurately and consistently identify those people with Parkinson’s disease who are at a higher risk of falling. Wearable sensors provide a portable and affordable alternative for researchers and clinicians who are seeking to objectively assess movements and falls risk in the clinical setting. However, no consensus currently exists on the optimal placements for sensors and the best outcome measures to use for assessing standing balance and walking stability in Parkinson’s disease patients. Hence, this systematic review aimed to examine the available literature to establish the best sensor types, locations and outcomes to assess standing balance and walking stability in this population.

Methods

Papers listed in three electronic databases were searched by title and abstract to identify articles measuring standing balance or walking stability with any kind of wearable sensor among adults diagnosed with PD. To be eligible for inclusion, papers were required to be full-text articles published in English between January 1994 and December 2014 that assessed measures of standing balance or walking stability with wearable sensors in people with PD. Articles were excluded if they; i) did not use any form of wearable sensor to measure variables associated with standing balance or walking stability; ii) did not include a control group or control condition; iii) were an abstract and/or included in the proceedings of a conference; or iv) were a review article or case study. The targeted search of the three electronic databases identified 340 articles that were potentially eligible for inclusion, but following title, abstract and full-text review only 26 articles were deemed to meet the inclusion criteria. Included articles were assessed for methodological quality and relevant data from the papers were extracted and synthesized.

Results

Quality assessment of these included articles indicated that 31% were of low methodological quality, while 58% were of moderate methodological quality and 11% were of high methodological quality. All studies adopted a cross-sectional design and used a variety of sensor types and outcome measures to assess standing balance or walking stability in people with Parkinson’s disease. Despite the typically low to moderate methodological quality, 81% of the studies reported differences in sensor-based measures of standing balance or walking stability between different groups of Parkinson’s disease patients and/or healthy controls.

Conclusion

These data support the use of wearable sensors for detecting differences in standing balance and walking stability between people with PD and controls. Further high-quality research is needed to better understand the utility of wearable sensors for the early identification of Parkinson’s disease symptoms and for assessing falls risk in this population.

PROSPERO Registration

CRD42014010838  相似文献   

18.
Matthews KR  Calhoun KM  Lo N  Ho V 《PloS one》2011,6(12):e29738
In the past 30 years, the average age of biomedical researchers has steadily increased. The average age of an investigator at the National Institutes of Health (NIH) rose from 39 to 51 between 1980 and 2008. The aging of the biomedical workforce was even more apparent when looking at first-time NIH grantees. The average age of a new investigator was 42 in 2008, compared to 36 in 1980. To determine if the rising barriers at NIH for entry in biomedical research might impact innovative ideas and research, we analyzed the research and publications of Nobel Prize winners from 1980 to 2010 to assess the age at which their pioneering research occurred. We established that in the 30-year period, 96 scientists won the Nobel Prize in medicine or chemistry for work related to biomedicine, and that their groundbreaking research was conducted at an average age of 41-one year younger than the average age of a new investigator at NIH. Furthermore, 78% of the Nobel Prize winners conducted their research before the age of 51, the average age of an NIH principal investigator. This suggested that limited access to NIH might inhibit research potential and novel projects, and could impact biomedicine and the next generation scientists in the United States.  相似文献   

19.
Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号