首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have tested whether cytokinesis is as sensitive to hydrophobic interactions as karyokinesis, and evaluated the usefulness of the frequency of binucleated cells as end-point. Treating cultured cells for 2 or 24 h, with different lipophilic alcohols and chlorinated hydrocarbons made this possible. Colcemid and cytochalasin B were applied as positive controls for inhibition of karyokinesis and cytokinesis, respectively. Several-fold increases of binucleated cells could be seen with cytochalasin B after 2 h of treatment, while there was no increase with colcemid, which instead blocked cells in prometaphase/metaphase. The solvent acted primarily through hydrophobic interactions. For each solvent, the blocking of cells in prometaphase/metaphase and a minor increase in binucleated cells, were seen at approximately the same concentration; the binucleated cells probably emanated from cells in anaphase/telophase at the start of treatment. We conclude that the spindle function and cleavage show similar sensitivity to hydrophobic interactions. After prolonged treatment, allowing escape from the metaphase block, the solvents induced binucleated and multinucleated cells. By forming the quotient between multinucleated (MULTI) and binucleated (BIN) cells one could distinguish between effects primarily on the spindle or cytokinesis, respectively. All solvents, and a combination of colcemid and cytochalasin B, showed quotients intermediate between those observed with colcemid (high MULTI/BIN) and cytochalasin B (low MULTI/BIN), respectively. Both protocols revealed the same relationship between lowest active concentration and lipophilicity for the solvents, implying that concentration, not dose were of prime importance. The specific inhibitors acted at low concentrations in relation to lipophilicity, clearly demonstrating their chemical mechanisms. This approach can be used for rapid screening of potential aneugens, distinguishing between routes, and when lipophilicity is known, also reveal the principal mechanism of action, i.e. physico-chemical or chemical.  相似文献   

2.
Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).  相似文献   

3.
Anchorage-independent growth is a characteristic feature of cancer cells. However, it is unclear whether it represents a cause or a consequence of tumorigenesis. For normal cells, integrin-mediated adhesion is required for completion of the G1 and cytokinesis stages of the cell cycle. This study identified a mechanism that can drive anchorage-independent growth if the G1 checkpoint is suppressed. Cells with defective G1 checkpoint progressed through several rounds of the cell cycle in suspension in spite of uncompleted cytokinesis, thereby forming bi- and multilobular cells. Aurora B and CEP55 were localized to midbodies between the lobes, suggesting that the cytokinesis process reached close to abscission. Integrin-mediated re-attachment of such cells induced cytokinesis completion uncoupled from karyokinesis in most cells. However, a portion of the cells instead lost the constriction and became binucleated. Also, long-term suspension culture in soft agar produced colonies where the cytokinesis block was overcome. This process was fibronectin-dependent since fibronectin-deficient cells did not form colonies unless fibronectin was expressed or exogenously added. While fibronectin normally is not deposited on non-adherent single cells, bi/multilobular cells accumulated fibronectin in the intussusceptions. Based on our data we conclude: 1) Suppression of the G1 checkpoint allows multiple rounds of the cell cycle in detached cells and thereby enables matrix formation on their surface. 2) Uncompleted cytokinesis due to cell detachment resumes if integrin interactions are re-formed, allowing colony formation in soft agar 3) Such delayed cell division can generate binucleated cells, a feature known to cause chromosomal instability.  相似文献   

4.
Carvedilol, a beta-adrenergic blocker used to treat cardiovascular diseases, protects cell membranes from lipid peroxidative damage. Previous studies suggested the drug resides in a non-polar environment and partitions into cell membranes, perturbing their fluidity. Here differential scanning calorimetry (DSC) and fluorescence spectroscopy were applied to further investigate interactions of carvedilol with a liposome model. Results indicate the association is relatively unaffected by pH or temperature, but could be sensitive to liposome composition. The drug's carbazole group plays the dominant role in bilayer perturbation. Compared with other beta-blockers examined, carvedilol produced the strongest liposome DSC perturbation. Locations of carbazole and carvedilol in the liposome were determined using depth-dependent fluorescent probes. Both compounds are situated in the middle of the bilayer, consistent with strong hydrophobic interactions. This combination of high lipophilicity and specific chemical structure appear required for carvedilol's novel antioxidant activity, and may enhance cardioprotection.  相似文献   

5.
Gao HW  Liu XH  Qiu Z  Tan L 《Amino acids》2009,36(2):251-260
We studied the non-specific interactions of two azo compounds: biebrich scarlet (BS) and naphthochrome green (NG), with four model proteins: bovine serum albumin, ovalbumin, poly-l-lysine and hemoglobin by UV-VIS spectrometry, fluorophotometry and circular dichroism melting technique. The optimal acidities of NG and BS for binding to proteins correspond to the physiological pHs of skin and gastro tissues. The saturation binding numbers of BS and NG on peptide chains were determined and the effects of electrolytes and temperature were investigated. These interactions were fitted by the Temkin absorption model and their thermodynamic parameters were calculated. The different bindings of BS and NG to proteins were compared from their molecular structures. We inferred that an ion-pair electrostatic interaction first fixes azo compounds to basic amino acid residues and subsequent binding involves the collective action of other non-covalent bonds: hydrogen bond, van der Waals force, and hydrophobic interaction. This combination of bonds caused a change of secondary conformation of protein from β-sheet to helix and the possible process was illustrated. The potential protein toxicity resulting from such a non-specific binding was analyzed. Besides, the interaction of BS with peptide chains was applied to protein assay.  相似文献   

6.
The in vitro micronucleus technique   总被引:46,自引:0,他引:46  
Fenech M 《Mutation research》2000,455(1-2):81-95
The study of DNA damage at the chromosome level is an essential part of genetic toxicology because chromosomal mutation is an important event in carcinogenesis. The micronucleus assays have emerged as one of the preferred methods for assessing chromosome damage because they enable both chromosome loss and chromosome breakage to be measured reliably. Because micronuclei can only be expressed in cells that complete nuclear division a special method was developed that identifies such cells by their binucleate appearance when blocked from performing cytokinesis by cytochalasin-B (Cyt-B), a microfilament-assembly inhibitor. The cytokinesis-block micronucleus (CBMN) assay allows better precision because the data obtained are not confounded by altered cell division kinetics caused by cytotoxicity of agents tested or sub-optimal cell culture conditions. The method is now applied to various cell types for population monitoring of genetic damage, screening of chemicals for genotoxic potential and for specific purposes such as the prediction of the radiosensitivity of tumours and the inter-individual variation in radiosensitivity. In its current basic form the CBMN assay can provide, using simple morphological criteria, the following measures of genotoxicity and cytotoxicity: chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic bridges), cell division inhibition, necrosis and apoptosis. The cytosine-arabinoside modification of the CBMN assay allows for measurement of excision repairable lesions. The use of molecular probes enables chromosome loss to be distinguished from chromosome breakage and importantly non-disjunction in non-micronucleated binucleated cells can be efficiently measured. The in vitro CBMN technique, therefore, provides multiple and complementary measures of genotoxicity and cytotoxicity which can be achieved with relative ease within one system. The basic principles and methods (including detailed scoring criteria for all the genotoxicity and cytotoxicity end-points) of the CBMN assay are described and areas for future development identified.  相似文献   

7.
? A mitogen-activated protein kinase kinase kinase (MAPKKK) double mutant, Arabidopsis homologue of nucleus and phragmoplast associated kinase (anp) anp2anp3, and the mitogen-activated protein kinase (MAPK) 4 mutant mpk4 of Arabidopsis thaliana show prominent cytokinetic defects. This prompted the analysis of mitotic and cytokinetic progression as a function of MAPK signalling. Mutants were compared with wild types untreated or treated with the specific MAPKK inhibitor PD98059. ? This study included phenotype analysis, expression analysis of the MPK4 promoter, immunofluorescent localization of MPK4, tubulin and MAP65-1, and time-lapse microscopic visualization of the mitotic microtubule (MT) transitions in control, mutant and inhibitor-treated cells. ? Mutant and inhibitor-treated cells showed defects in mitosis and cytokinesis, including aberrant spindle and phragmoplast formation and drastically delayed or abortive mitosis and cytokinesis. As a result, bi- and multinucleate cells were formed, ultimately disturbing the vegetative tissue patterning. MPK4 was localized to all stages of the expanding phragmoplast, in a pattern similar to that of its putative substrate MAP65-1. ? In this study, MPK4 is shown to be involved in the regulation of mitosis/cytokinesis through modulation of the cell division plane and cytokinetic progression.  相似文献   

8.
S Ferrari  T Leemann  P Dayer 《Life sciences》1991,48(23):2259-2265
The importance of lipophilicity as a determinant of the affinity of beta-adrenoceptor blocking agents for a specific human hepatic monooxygenase--cytochrome P450IID6 (responsible for the debrisoquine-type of oxidation polymorphism)--was investigated in vitro by estimating the inhibition constants of a series of compounds in a microsomal system with monitoring of the kinetics of dextromethorphan O-demethylation. Lipophilicity is a key predictor of the affinity of beta-blocking drugs for cytochrome P450IID6 and of their potential to cause specific competitive drug interactions, but more complex structural factors appear to be important as well. A high lipophilicity is also a necessary, but not a sufficient condition for these compounds to be metabolized by cytochrome P450IID6.  相似文献   

9.
Singh P  Jindal B  Surolia A  Panda D 《Biochemistry》2012,51(27):5434-5442
A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (~15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.  相似文献   

10.
The theoretical model of proteins on the two-dimensional square lattice, introduced previously, is extended to include the hydrophobic interactions. Two proteins, whose native conformations have different folded patterns, are studied. Units in the protein chains are classified into polar units and nonpolar units. If there is a vacant lattice point next to a nonpolar unit, it is interpreted as being occupied by solvent water and the entropy of the system is assumed to decrease by a certain amount. Besides these hydrophobic free energies, the specific long-range interactions studied in previous papers are assumed to be operative in a protein chain. Equilibrium properties of the folding and unfolding transitions of the two proteins are found to be similar, even though one of them was predicted, based on the one globule model of the transitions, to unfold through a significant intermediate state (or at least to show a tendency toward such a behavior), when the hydrophobic interactions are strongly weighted. The failure of this prediction led to the development of a more refined model of transitions; a non-interacting local structure model. The hydrophobic interactions assumed here have a character of non-specific long-range interactions. Because of this character the hydrophobic interactions have the effect of decelerating the folding kinetics. The deceleration effect is less pronounced in one of the two proteins, whose native conformation is stabilized by many pairs of medium-range interactions. It is therefore inferred that the medium-range interactions have the power to cope with the decelerating effect of the non-specific hydrophobic interactions.  相似文献   

11.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K i) were in the range 0.05 to 5 μM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with non-polar amino acids.  相似文献   

12.
Genotoxicity of heat-processed foods   总被引:7,自引:0,他引:7  
Jägerstad M  Skog K 《Mutation research》2005,574(1-2):156-172
Gene-environment interactions include exposure to genotoxic compounds from our diet and it is no doubt, that humans are regularly exposed to e.g. food toxicants, not least from cooked foods. This paper reviews briefly four classes of cooked food toxicants, e.g. acrylamide, heterocyclic amines, nitrosamines and polyaromatic hydrocarbons. Many of these compounds have been recognised for decades also as environmental pollutants. In addition cigarette smokers and some occupational workers are exposed to them. Their occurrence, formation, metabolic activation, genotoxicity and human cancer risk are briefly presented along with figures on estimated exposure. Several lines of evidence indicate that cooking conditions and dietary habits can contribute to human cancer risk through the ingestion of genotoxic compounds from heat-processed foods. Such compounds cause different types of DNA damage: nucleotide alterations and gross chromosomal aberrations. Most genotoxic compounds begin their action at the DNA level by forming carcinogen-DNA adducts, which result from the covalent binding of a carcinogen or part of a carcinogen to a nucleotide. The genotoxic and carcinogenic potential of these cooked food toxicants have been evaluated regularly by the International Agency for Research on Cancer (IARC), which has come to the conclusion that several of these food-borne toxicants present in cooked foods are possibly (2A) or probably (2B) carcinogenic to humans, based on both high-dose, long-term animal studies and in vitro and in vivo genotoxicity tests. Yet, there is insufficient scientific evidence that these genotoxic compounds really cause human cancer, and no limits have been set for their presence in cooked foods. However, the competent authorities in most Western countries recommend minimising their occurrence, therefore this aspect is also included in this review.  相似文献   

13.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K) were in the range 0.05 to 5 microM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with nonpolar amino acids.  相似文献   

14.
Abstract

Objective

The protection conferred by a series of synthetic organoselenium compounds against genotoxicity and oxidative stress induced by a reference mutagen cyclophosphamide (CP) was assessed.

Method

Genotoxicity was induced in mice by CP treatment (25 mg/kg b.w.) for 10 consecutive days. Organoselenium compounds (3 mg/kg b.w.) were administered orally in a concomitant and pretreatment schedule. DNA damage in peripheral blood lymphocytes and frequency of chromosomal aberration in the bone marrow cells were measured. Liver tissues were collected for analysis of the activity of antioxidant and detoxifying enzymes, lipid peroxidation (LPO) level, glutathione content, and histopathology.

Results

Exposure to CP not only led to a significant increase in the percent of chromosomal aberration and DNA damage, but also enhanced generation of hepatic reactive oxygen species (ROS) and LPO level. The organoselenium compounds demonstrated marked functional protection against CP-induced genotoxicity. DNA damage and chromosomal aberration along with ROS generation were attenuated in the organoselenium-treated mice compared with the CP-treated control mice. CP caused marked depression in the activities of the selenoenzymes (glutathione peroxidase (GPx) and thioredoxin reductase (TRxR)) and other detoxifying and antioxidant enzymes, while treatment with organoselenium compounds restored all these activities towards normal.

Discussion

The protective effect of these compounds may be primarily associated with the improvement of the activity of antioxidant and detoxifying enzymes (including the selenoenzymes, GPx, and TRxR) that are known to protect the DNA and other cellular components from oxidative damage.  相似文献   

15.
The study presents new information about the structure–activity relationships of the skin permeation enhancers. A series of ceramide analogues including eight different polar head groups and six different chain lengths was synthesised. The compounds were evaluated as permeation enhancers in vitro using porcine skin. The physico-chemical parameters of the tested compounds obtained by computer modelling were used to evaluate, by multiple linear regression, the enhancement ratios (ERs) of the compounds. The regression analysis suggests that the hydrogen bonding ability of the compounds is inversely related to the ER values and that the molecular size and lipophilicity must be well balanced. In the studied enhancers having the same chain length, the enhancement activity is dependent only on their permeability coefficients. This finding confirms the Warner's hypothesis that the polar head of an enhancer is responsible for the permeation and anchoring of the molecule into the stratum corneum lipids and that it does not influence the mechanism of action. For the specific action of enhancers, that is disordering of the intercellular lipid packing, the length of the hydrophobic chain(s) and not the lipophilicity is important. Furthermore, the examination of the FTIR spectra indicated that the most active substances possess the most ordered chains. The described relationships could bring more rational approaches in designing new potent enhancers for transdermal formulations.  相似文献   

16.
G. Röderer 《Protoplasma》1979,99(1-2):39-51
Summary Organic lead compounds inhibit cytokinesis of the chrysophycean flagellatePoterioochromonas malhamensis leading to giant, multinucleate cells. This action on cytokinesis is compared with the long-time effects of various compounds with better known subcellular activities.Calcium (10 mM), and cytochalasin B (up to 100 g/ml) do not visibly influence cytokinesis. Caffeine (1 mM) totally inhibits multiplication of the algae whereas calcium has only a slight and cytochalasin has no effect on this parameter.The other reference-compounds (colchicine, sodium cacodylate, deuterium oxide, local anesthetics, and sodium dodecylsulfate) all inhibit cell multiplication, simultaneously leading to giant multinucleate cells, obviously by inhibition of cytokinesis.The most potent inhibitor of cytokinesis is triethyl lead which was shown to be 250× more effective than colchicine in respect to the molar concentrations.The comparison of the effects of tetraethyl lead and triethyl lead with the reference agents leads to the conclusion that organic lead compounds might inhibit cytokinesis ofPoterioochromonas malhamensis by disintegrating peripheral microtubules and/or by interfering with structures and functions of membranes.

Verwendete Abkürzungen im Text CB Cytochalasin B - KE Karminessigsäure - KV kontraktile Vakuole - LV Leukosinvakuole - MT Mikrotubuli - SDS Na-Dodecyl-sulfat - TEL Tetraäthylblei - TriEL Triäthylblei  相似文献   

17.
The effects of cytochalasin B on cytokinesis, karyokinesis and DNA synthesis of various cells transformed by DNA viruses (SV40, polyoma and adeno 12) and of non-transformed cells were studied. Cytokinesis of all cell lines tested was completely inhibited by cytochalasin B at the concentration 0.5–2.0 μg/ml. After treatment by cytochalasin B, non-transformed cells became bi- or trinucleated without the division of cytoplasm. Three of the virally transformed cells also became bi- or trinucleated with a small number of multinucleate cells. On the other hand, in two SV40-transformed mouse cells, the number of nuclei per cell increased significantly and cells with 5–10 nuclei were frequently observed. Upon removal of cytochalasin B, cytoplasmic division recovered rapidly and consequently mono- or binucleate cells were formed. In all transformed cells, DNA synthesis was not inhibited by cytochalasin B, while DNA synthesis was inhibited in non-transformed cells.  相似文献   

18.
Searching for molecules possessing antitumour activity, a parallel molecule library of aromatic carboxamides has been designed and synthesised. This work resulted in a "thiophene" sub-library containing a thiophene core and of a "furoyl" sub-library with a furoyl core, respectively. In both sub-libraries substitutions were carried out with six different groups resulting in six pairs of compounds differing in only the heteroatom of aromatic ring of the cores. To study the importance of the type of cores and the specific substitutions in relation to their lipophilicity and antitumour activity, lipophilicity of carboxamides was determined by chromatographical data (log k') and by software calculated parameters (CLOGP). Pairs of compounds were tested for their ability to inhibit the proliferation of the A431 cells by MTT assay. The isosteric molecule pairs were successfully separated. Our results showed that the experimentally determined (log k') and the calculated (CLOGP) lipophilicity parameters correlated well with each other. Furthermore, lipophilicity values of the thiophene sub-library were always higher than those in the furoyl sub-library. Moreover, compounds of the thiophene sub-library were more active than their respective furoyl pairs in our MTT antiproliferative assay. From these observations we can conclude that the higher the lipophilicity values the higher the antitumour activity of the carboxamides synthesised. Therefore, determination of lipophilicity by measuring the log k' or by calculating the CLOGP values of the carboxamide sub-libraries may help to predict their biological activities.  相似文献   

19.
The absorption capacity, the specific hydrophilic surface area, the lipophilicity and the specific hydrophobic surface area of 17 monoamine oxidase inhibitory drugs were determined by means of adsorptive and reversed-phase thin-layer chromatography for future application of these molecular parameters in quantitative structure-activity relationship studies. Principal component analysis suggests that most of the physicochemical parameters have a different information content, and their application in the elucidation of their mode of action is therefore justified.  相似文献   

20.
The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) has convened an expert working group which consisted of the authors of this paper and their respective committees, consulting groups and task forces. Two ICH guidances regarding genotoxicity testing have been issued: S2A, 'Guidance on Specific Aspects of Regulatory Genotoxicity Tests' and S2B, 'Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals.' Together, these guidance documents now form the regulatory backbone for genotoxicity testing and assessment of pharmaceuticals in the European Union, Japan, and the USA. These guidances do not constitute a revolutionary new approach to genotoxicity testing and assessment, instead they are an evolution from preexisting regional guidelines, guidances and technical approaches. Both guidances describe a number of specific criteria as well as a general test philosophy in genotoxicity testing. Although these guidances were previously released within the participating regions in their respective regulatory communiqués, to ensure their wider distribution and better understanding, the texts of the guidances are reproduced here in their entirety (see Appendix A) and the background for the recommendations are described. The establishment of a standard battery for genotoxicity testing of pharmaceuticals was one of the most important issues of the harmonisation effort. This battery currently consists of: (i) a test for gene mutation in bacteria, (ii) an in vitro test with cytogenetic evaluation of chromosomal damage with mammalian cells or an in vitro mouse lymphoma tk assay, (iii) an in vivo test for chromosomal damage using rodent hematopoietic cells. A major change in testing philosophy is the acceptance of the interchangeability of testing for chromosomal aberrations in mammalian cells and the mouse lymphoma tk assay. This agreement was reached on the basis of the extensive review of databases and newly generated experimental data which are in part described in this publication. The authors are fully aware of the fact that some of the recommendations given in these ICH guidances are transient in nature and that the dynamic qualities and ongoing evolution of genetic toxicology makes necessary a continuous maintenance process that would serve to update the guidance as necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号