首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6–0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones.  相似文献   

2.
Cone and rod photoreceptors utilize cyclic guanosine monophosphate (cGMP) in the light regulation of membrane polarization. The prototype for visual transduction is established for rod photoreceptors, which utilize a cascade of reactions to regulate a cyclic nucleotide phosphodiesterase (PDE) (EC 3.1.4.17) and thereby control the intracellular concentration of cGMP. Although cones appear to utilize a comparable cGMP cascade for their phototransduction, evidence exists that the PDE from cone photoreceptors may be different from that of rods. Dissociated cone photoreceptors, isolated retinas, and cone outer segments from the lizard, Anolis carolinensis, have been used to identify and characterize a PDE enzyme complex that shares several features in common with the rod outer segment (ROS) PDE complex. Immunoadsorption and sodium dodecyl sulfate-polyacrylamide gel electrophoresis have identified a subunit of lizard cone PDE that has an apparent electrophoretic mobility of 84 kDa and a subunit of lizard rod PDE that migrates at approximately 90 kDa. The lizard cone PDE complex is similar in size, extraction, activation, and immunological characteristics to the PDE complex of rod photoreceptors from lizard, bovine, and human retinas. The lizard cone PDE complex, and perhaps that from cone photoreceptors in general, differs from that of ROS in its chromatographic properties on anion-exchange resins. The sharing of physical and activation properties of the rod and cone PDE complex is compatible with the phototransduction process occurring by a similar mechanism in both cell types. The differences in light sensitivity and speed of response may be attributable to features of the individual proteins that form the PDE complexes of rods and cones or to other undisclosed features of the respective cascades.  相似文献   

3.
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.  相似文献   

4.
Abstract: Electrophysiological studies of photoreceptors from the horseshoe crab Limulus polyphemus continue to provide fundamental new knowledge of the photoresponse in invertebrates. Therefore, it is of particular interest to characterize the molecular components of the photoresponse in this system. Here we describe an arrestin cloned from a cDNA library constructed using poly(A)+ RNA isolated from Limulus lateral eyes. The protein, deduced from the arrestin cDNA, is most similar to arrestin from locust antennae (56% identity) and Drosophila phosrestin I (53% identity). Limulus arrestin was expressed in a heterologous system, and its properties were compared with those of a 46-kDa light-regulated phosprotein (pp46A) in Limulus photoreceptors described in previous studies from this laboratory. Arrestin and pp46A (a) have the same apparent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (b) have an isoelectric point in the basic pH range, (c) require calmodulin and elevated Ca2+ levels for phosphorylation, (d) are immunoreactive with monoclonal antibody C10C10 directed against a sequence in bovine arrestin (S-antigen) that is perfectly conserved in the deduced arrestin protein, and (e) are associated with photoreceptors. We conclude that the arrestin described here and pp46A are the same protein. The results of this and previous studies show that in Limulus photoreceptors, light regulates the phosphorylation of arrestin in complex ways.  相似文献   

5.
In an attempt to identify the brain photoreceptors that mediate the photoperiodic response of the vetch aphid, Megoura viciae, we utilised immunocytochemical techniques and employed 20 antibodies directed against invertebrate and vertebrate opsins and phototransduction proteins. A sub-set of these antibodies (to Drosophila rhodopsin 1: RH1-1; vertebrate cone opsins: COS-1; CERN-874; CERN-933; vertebrate rod opsin: CERN-901; vertebrate arrestin: AB-Arr; vertebrate transducin+arrestin+rhodopsin kinase+cGMP phosphodiesterase: CERN-911; and vertebrate cellular retinoid binding protein: CRALBP) consistently labelled an anterior ventral neuropile region of the protocerebrum. These anatomical findings, coupled with previous localised illumination and micro-lesion studies, provide strong evidence that this region of the aphid brain houses the photoperiodic photoreceptors. The present study also confirms that the medial (Group I) neurosecretory cells are not the photoperiodic photoreceptors.  相似文献   

6.
The anatomical organization of the Drosophila ommatidia is achieved by specification and contextual placement of photoreceptors, cone and pigment cells. The photoreceptors must be sealed from high ionic concentrations of the hemolymph by a barrier to allow phototransduction. In vertebrates, a blood-retinal barrier (BRB) is established by tight junctions (TJs) present in the retinal pigment epithelium and endothelial membrane of the retinal vessels. In Drosophila ommatidia, the junctional organization and barrier formation is poorly understood. Here we report that septate junctions (SJs), the vertebrate analogs of TJs, are present in the adult ommatidia and are formed between and among the cone and pigment cells. We show that the localization of Neurexin IV (Nrx IV), a SJ-specific protein, coincides with the location of SJs in the cone and pigment cells. Somatic mosaic analysis of nrx IV null mutants shows that loss of Nrx IV leads to defects in ommatidial morphology and integrity. nrx IV hypomorphic allelic combinations generated viable adults with defective SJs and displayed a compromised blood-eye barrier (BEB) function. These findings establish that SJs are essential for ommatidial integrity and in creating a BEB around the ion and light sensitive photoreceptors. Our studies may provide clues towards understanding the vertebrate BEB formation and function.  相似文献   

7.
Using a panel of monoclonal antibodies, it has previously been demonstrated that the cytosol of nucleated red cells (trout and turkey) contains a protein similar to arrestin, a soluble protein found so far only in the photosensitive cells and which, by binding to photoexcited rhodopsin, inhibits the phototransduction process. The role of this arrestin-like protein in non-photosensitive cells is questionable. In this report we present evidence that partially purified red blood cell arrestin (RBC arrestin) behaves functionally like bovine retinal arrestin: it binds to phosphorylated bovine rhodopsin only when this receptor has been photoactivated. Thus RBC arrestin and bovine retinal arrestin are closely related both structurally and functionally. By analogy with the function of retinal arrestin, it is proposed that RBC arrestin is involved in desensitization of membrane transport proteins and/or adrenergic receptors.  相似文献   

8.
Abstract: To determine the presence of cone or rod cyclic GMP phosphodiesterase (EC 3.1.4.17) in the mammalian pineal, extracts from adult rat and bovine pineals were injected onto a Mono Q anion-exchange HPLC column and eluted with an NaCl linear gradient. Fractions were immunoadsorbed with monoclonal antibodies specific to rod and cone phosphodiesterases (ROS-1) and to calmodulin-phosphodiesterase complexes (ACC). Profiles were assayed with 10 µmol/L [3H]cyclic GMP in the presence of calcium-calmodulin, histone, or trypsin. Rat and bovine pineals displayed a single peak of activity recognized by ROS-1, which corresponded to the activity of the cone but, not to the rod in bovine retina. ROS-1 immunoadsorbed ∼80% of the activity in the 60-day-old rat pineal but only 26% of the activity in bovine pineal. ACC immunoadsorbed the remaining activity in both species. Western blot analysis of rat pineal extracts revealed three polypeptides of ∼87, 15, and 10 kDa when probed with a rod/cone phosphodiesterase-specific antiserum. The specific activity of the cone-like phosphodiesterase in 10-day-old rat pineals was twice that of this isozyme in the bovine retina and 150 times that in the bovine pineal. The specific activity of phosphodiesterase in rat pineals decreased with age. We conclude that an enzyme with biochemical and antigenic characteristics similar to cone, but distinct from rod phosphodiesterase, is present in bovine and rat pineals.  相似文献   

9.
10.
Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin-phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca(2+)] was prevented from changing after a bright flash by exposure to 0Ca(2+)/0Na(+) solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca(2+)-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca(2+)] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment.  相似文献   

11.
12.
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V–VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the ‘constitutive activity’ found in arrestin variants.  相似文献   

13.
Light absorbed by a photopigment in a photoreceptor cell causes a photochemical reaction converting the 11-cis retinal chromophore into the all-trans configuration. These changes lead to a series of events that causes cGMP hydrolysis, a following decrease of cGMP in the cytoplasm of the photoreceptor outer segment and a closure of cGMP-gated cationic channels. As a consequence of these processes the membrane hyperpolarizes. In pineal photoreceptor cells of lower vertebrates these processes are only partly investigated. Molecules involved in the phototransduction process and the desensitization, like opsin, vitamin A, α-transducin and arrestin, have been immunocytochemically localized in pineal photoreceptors and also electrophysiological studies have shown that phototransduction mechanisms in pineal photoreceptors might be very similar to those found in retinal photoreceptors. This review will summarize some of the current knowledge on pineal photoreception and compare it with retinal processes.  相似文献   

14.
15.
Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.  相似文献   

16.
Autophagy is a lysosomal degradation pathway critical to preventing the accumulation of cytotoxic proteins. Deletion of the essential autophagy gene Atg5 from the rod photoreceptors of the retina (atg5Δrod mouse) results in the accumulation of the phototransduction protein transducin and the degeneration of these neurons. The purpose of this study is to test the hypothesis that autophagic degradation of visual transduction proteins prevents retinal degeneration. Targeted deletion of both Gnat1 (a gene encoding the α subunit of the heterotrimeric G-protein transducin) and Atg5 in the rod photoreceptors resulted in a significantly decreased rate of rod cell degeneration as compared to the atg5Δrod mouse retina, and considerable preservation of photoreceptors. Supporting this we used a novel technique to immunoprecipitate green fluorescent protein (GFP)-tagged autophagosomes from the retinas of the GFP-LC3 mice and demonstrated that the visual transduction proteins transducin and ARR/arrestin are associated with autophagosome-specific proteins. Altogether, this study shows that degradation of phototransduction proteins by autophagy is necessary to prevent retinal degeneration. In addition, we demonstrate a simple and easily reproducible immunoisolation technique for enrichment of autophagosomes from the GFP-LC3 mouse retina, providing a novel application to the study of autophagosome contents across different organs and specific cell types in vivo.  相似文献   

17.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

18.
19.
Due to extensive elaboration of the photoreceptor cilium to form the outer segment, axonemal transport (IFT) in photoreceptors is extraordinarily busy, and retinal degeneration is a component of many ciliopathies. Functional loss of heterotrimeric kinesin-2, a major anterograde IFT motor, causes mislocalized opsin, followed by rapid cell death. Here, we have analyzed the nature of protein mislocalization and the requirements for the death of kinesin-2-mutant rod photoreceptors. Quantitative immuno EM showed that opsin accumulates initially within the inner segment, and then in the plasma membrane. The light-activated movement of arrestin to the outer segment is also impaired, but this defect likely results secondarily from binding to mislocalized opsin. Unlike some other retinal degenerations, neither opsin–arrestin complexes nor photoactivation were necessary for cell loss. In contrast, reduced rod opsin expression provided enhanced rod and cone photoreceptor survival and function, as measured by photoreceptor cell counts, apoptosis assays, and ERG analysis. The cell death incurred by loss of kinesin-2 function was almost completely negated by Rho−/−. Our results indicate that mislocalization of opsin is a major cause of photoreceptor cell death from kinesin-2 dysfunction and demonstrate the importance of accumulating mislocalized protein per se, rather than specific signaling properties of opsin, stemming from photoactivation or arrestin binding.  相似文献   

20.
In mammals, the blockade of the phototransduction cascade causes loss of vision and, in some cases, degeneration of photoreceptors. However, the molecular mechanisms that link phototransduction with photoreceptor degeneration remain to be elucidated. Here, we report that a mutation in the gene encoding a central effector of the phototransduction cascade, cGMP phosphodiesterase 6alpha'-subunit (PDE6alpha'), affects not only the vision but also the survival of cone photoreceptors in zebrafish. We isolated a zebrafish mutant, called eclipse (els), which shows no visual behavior such as optokinetic response (OKR). The cloning of the els mutant gene revealed that a missense mutation occurred in the pde6alpha' gene, resulting in a change in a conserved amino acid. The PDE6 expressed in rod photoreceptors is a heterotetramer comprising two closely related similar hydrolytic alpha and beta subunits and two identical inhibitory gamma subunits, while the PDE6 expressed in cone photoreceptors consists of two homodimers of alpha' subunits, each with gamma subunits. The els mutant displays no visual response to bright light, where cones are active, but shows relatively normal OKR to dim light, where only rods function, suggesting that only the cone-specific phototransduction pathway is disrupted in the els mutant. Furthermore, in the els mutant, cones are selectively eliminated but rods are retained at the adult stage, suggesting that cones undergo a progressive degeneration in the els mutant retinas. Taken together, these data suggest that PDE6alpha' activity is important for the survival of cones in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号