首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of dissolved combined amino acids (DCAA), dissolved free amino acids (DFAA), and dissolved DNA (D-DNA) as sources of C and N for marine bacteria in batch cultures with variable substrate C/N ratios was studied. Glucose, ammonium, alanine, and phosphate were added to the cultures to produce C/N ratios of 5, 10, and 15 and to ensure that phosphorus was not limiting. Maximum bacterial particulate organic carbon production (after 25 h of incubation) was inversely correlated with the C/N ratio: with the addition of identical amounts of carbon, the levels of production were 9.0-, 10.0-, and 11.1-fold higher at C/N ratios of 15, 10, and 5, respectively, relative to an unamended control. The bacterial growth efficiency increased from 22% (control cultures) to 44 to 53% in the cultures with manipulated C/N ratios (C/N-manipulated cultures). Net carbon incorporation from DCAA, DFAA, and D-DNA supported on average 19, 4, and 3% (control cultures and cultures to which only phosphate was added [+P cultures]) and 5, 4, and 0.3% of the particulate organic carbon production (C/N-manipulated cultures), respectively. In the C/N-manipulated cultures, a 2.6- to 3.4-fold-higher level of incorporation of DCAA, relative to that in the control cultures, occurred. Incorporation of D-DNA increased with the substrate C/N ratio, suggesting that D-DNA mainly was a source of N to the bacteria. Organic N (DCAA, DFAA, and D-DNA) sustained 14 to 49% of the net bacterial N production. NH4+ was the dominant N source and constituted 55 to 99% of the total N uptake. NO3- contributed up to 23% to the total N uptake but was released in two cultures. The studied N compounds sustained nearly all of the bacterial N demand. Our results show that the C/N ratio of dissolved organic matter available to bacteria has a significant influence on the incorporation of individual compounds like DCAA and D-DNA.  相似文献   

2.
Abundance of d isomers of amino acids has been used in studies of organic matter diagenesis to determine the contribution of bacterial biomass to the organic matter, especially in marine sediments. However, fluxes of d amino acids in pelagic waters are poorly known. Here we present seasonal changes (March–September) in concentrations of dominant d amino acids in the pool of dissolved free and combined (hydrolysable) amino acids (DFAA and DCAA) in the shallow Roskilde Fjord, Denmark. The amino acid dynamics are related to pelagic bacterial density and activity and abundance of viruses. d␣isomers made up 3.6 and 7.9% of the DFAA and DCAA (average values), respectively, and had similar seasonal variations in concentrations. In batch cultures (0.7- and 0.2-m filtered water in a 1:9 mixture) microbial activity reduced l+d DCAA concentrations in seven of ten sampling dates, while DCAA were released at the remaining three sampling times. NH4+ balance (uptake or release) in the cultures correlated significantly with variations in concentrations of d-DCAA, but not with the total DCAA pools. Abundance of viruses did not correlate with density or production of bacteria in the fjord, but covaried with mineralization of total C, DCAA and PO43− in the batch cultures. The content of d amino acids in bacterial biomass in the cultures varied from 6.7 to 12.5% and correlated with the d isomer concentration in the fjord, except for d-Ala. In an additional six-day batch culture study, DCAA and d-DCAA were assimilated by the bacteria during the initial 36 h, but were released between 36 and 42 h simultaneous with a decline in the bacterial density. Our results demonstrate that peptidoglycan components contribute to natural amino acid pools and are assimilated by bacterial assemblages. This cell wall “cannibalism” ensures an efficient recycling of nutrients within the microbial community. Significant positive correlations between viral abundance and bacterial mineralization of organic matter in the fjord indicated that viral lysis contributed to this nutrient recycling.  相似文献   

3.
Bacterial utilization of dissolved organic matter (DOM) was studied in water from a humic and a clearwater oligotrophic lake. Indigenous bacteria were inoculated into either 0.2 m natural filtered lake water, or lake water enriched fivefold with colloidal DOM >100 kD but below 0.2 m. Consumption of DOM was followed from changes in concentrations of total dissolved organic carbon (DOC), dissolved combined and free carbohydrates and amino acids (DCCHO and DFCHO, and DCAA and DFAA, respectively) and by uptake of monosaccharide and amino acid radioisotopes. DCCHO and DCAA made up 8% (humic lake) to 33–44% (clear-water lake) of the natural DOC pools, while DFCHO and DFAA contributed at most 1.7% to the DOC pools. Addition of >100 kD DOM increased the DOC concentrations by 50% (clearwater lake) to 92% (humic lake), but it only resulted in a higher bacterial production (by 63%) in the humic lake. During the incubations 13 to 37% of the DOC was assimilated by the bacteria, at estimated growth efficiencies of 4–8%. Despite the measured reduction of DOC, statistically significant changes of specific organic compounds, especially of DCCHO and DCAA, generally did not occur. Probably the presence of high molecular weight DOC interfered with the applied analytical procedures. Addition of radiotracers indicated, however, that DFAA sustained 17–58% and 29–100% of the bacterial carbon and nitrogen requirements, respectively, and that glucose met 1–3% of the bacterial carbon requirements. Thus, our experiments indicate that radiotracers, rather than measurements of concentration changes, should be used in studies of bacterial utilization of DOC in freshwaters with a high content of humic or high molecular weight organic matter.  相似文献   

4.
A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7–12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary.  相似文献   

5.
Distribution and composition of organic matter were investigated in Antarctic pack ice in early spring and summer. Accumulation of organic compounds was observed with dissolved organic carbon (DOC) and particulate organic carbon (POC) reaching 717 and 470 μM C, respectively and transparent exopolymeric particles (TEP) up to 3,071 μg Xanthan gum equivalent l−1. POC and TEP seemed to be influenced mainly by algae. Particulate saccharides accounted for 0.2–24.1% (mean, 7.8%) of POC. Dissolved total saccharides represented 0.4–29.6% (mean, 9.7%) of DOC, while dissolved free amino acids (DFAA) accounted for only 1% of DOC. Concentrations of TEP were positively correlated with those of saccharides. Monosaccharides (d-MCHO) dominated during winter–early spring, whereas dissolved polysaccharides did in spring–summer. DFAA were strongly correlated with d-MCHO, suggesting a similar pathway of production. The accumulation of monomers in winter is thought to result from limitation of bacterial activities rather than from the nature of the substrates.  相似文献   

6.
Data concerning concentrations and fluxes of dissolved organic compounds (DOC) from marine and lacustrine environments are reviewed and discussed. Dissolved free amino acids and carbohydrates comprised the main fraction in the labile organic carbon pool. Dissolved free amino acids in marine waters varied between 3–1400 nM and those of freshwaters between 2.6–4124 nM. Dissolved free carbohydrates varied between 0.4–5000 nM in marine systems and between 14–1111 nM in freshwaters. The turnover times of both substrate pools varied in marine waters between 1.4 hours and 948 days and in freshwaters between 2 hours and 51 days. Measurements of stable12/13C-ratio and14C-isotope dating in ocean deep water samples revealed DOC turnover times between 2000–6000 years. Studies on carbon flows within the aquatic food webs revealed that about 50% of photosynthetically fixed carbon was channelled via DOC to the bacterioplankton. Excreted organic carbon varied between 1–70% of photosynthetically fixed carbon in marine waters and between 1–99% in freshwaters. The labile organic carbon pool represented only 10–30% of the DOC. The majority (70–90%) of the DOC was recalcitrant to microbial assimilation. Only 10–20% of the DOC could be easily chemically identified. Most of the large bulk material represented dissolved humic matter and neither the chemical structure nor the ecological function of the DOC is as yet clearly understood.Abbreviations ATP Adenosine Tri-Phosphate - AMS Accelerated Mass Spectrometry - BSA Bovine Serum Albumin - GlAse GlucosidAse activity - DAA Dissolved Amino Acids - DCAA Dissolved Combined Amino Acids - DFAA Dissolved Free Amino Acids - DTAA Dissolved Total Amino Acids - DCHO Dissolved Carbohydrates - DCCHO Dissolved Combined Carbohydrates - DFCHO Dissolved Free Carbohydrates - DTCHO Dissolved Total Carbohydrates - DLCFaAc Dissolved Long Chain Fatty Acids - DSCFaAc Dissolved Short Chain Fatty Acids - DOC Dissolved Organic Carbon - DOM Dissolved Organic Matter - DHM Dissolved Humic Matter - DTPhOH Dissolved Total Phenolic compounds - DCPhOH Dissolved Combined Phenolic compounds - DFPhOH Dissolved Free Phenolic conpounds - EOC Excreted Organic Carbon - HS Humic Substances - HPLC High Performance Liquid Chromatography - HTCO High-Temperature Catalytic Oxidation - (Kt+Sn) Transport Constant + Natural Substrate from Michaelis Menten Kinetics - LOCP Labile Organic Carbon Pool - OM Organic Matter - MEE Microbial Extracellular Enzymes - PER Percent of Extracellular Release - PhDOC Photosynthetically derived Dissolved Organic Carbon - POC Particulate Organic Carbon - ROCP Recalcitrant Organic Carbon Pool - Tt Turnover time - UDOC Utilizable Dissolved Organic Carbon - Vmax Maximum Uptake Velocity - WCO Wet Chemical Oxidation Dedicated to Prof. Drs. J. Overbeck on the occasion of his 70th birthday  相似文献   

7.
The initial benthic decomposition of Zostera marina roots was studied in a controlled flow-through chamber experiment for 23 days. Sediment chambers without added roots served as controls. The inflowing and outflowing artificial seawater (ASW) was analyzed for O2, ΣCO2, urea-N, NH4+ and NO2+NO3. Sediment profiles of Eh, particulate organic carbon (POC) and nitrogen, dissolved organic nitrogen (DON), dissolved free amino acids (DFAA), urea-N, NH4+, DFAA and urea turnover rates, sulfate reduction and counts of total anaerobic heterotrophic bacteria and different functional groups were determined. Fluxes of O2, ΣCO2, urea-N and NH4+ were stimulated during root decomposition compared to the unamended control. There were indications of stimulated bacterial growth based on counts of total anaerobic heterotrophic bacteria, anaerobic phosphatase utilizers, ammonifyers and sulfate reducers. Independent estimates of nitrogen and carbon incorporation into bacterial biomass during root decomposition indicate that a major fraction of the nitrogen for microbial growth was mobilized from the indigenous particulate organic nitrogen (PON) pool, whereas the energy source for bacterial growth was mainly obtained from the added eelgrass roots. Most of the nitrogen mineralized during root decomposition was incorporated into the bacterial biomass resulting in a low efflux of urea-N and inorganic nitrogen from the sediment to the water column.  相似文献   

8.
Concentration of dissolved free amino acids (DFAA) and assimilation of the 5 most abundant DFAA (glutamic acid, serine, glycine, alanine and ornithine) were measured at 3-h intervals over 27 h in two Danish, eutrophic lakes. The carbon flux of the amino acid assimilation was compared with the major routes of carbon flux, including primary production, bacterial production and zooplankton grazing. In Frederiksborg Slotssø, the mean DFAA concentration was 275 nM with distinct peaks (up to 783 nM) 3 h after sunrise. Assimilation rates of the 5 amino acids amounted on the average to 2.03 µg Cl–1 h–1, but high values up to 7.41 µg Cl–1 h–1 occurred 3 h after sunrise and at midnight. The mean turnover time of the amino acid pools was 3.2 h. In Lake Mossø, the mean DFAA concentration was 592 nM with peak of 1 161 nM at dusk. The assimilation rate averaged 0.44 µg Cl–1 h–1, and the mean turnover time of the amino acid pools was 39 h. In Lake Mossø, similar turnover times of glutamic acid and serine were determined from the 14C-amino acid tracer technique and Michaelis-Menten uptake kinetics, indicating that the tracer technique gave reliable values of the actual assimilation. The average respiration percentages of the assimilated amino acids were 45% in Frederiksborg Slotssø and 51% in Lake Mossø. Extracellular organic carbon (EOC) released from the phytoplankton contributed DFAA to the water. In Lake Mossø, 81% of the ambient EOC pool was <700 daltons and 9.3% of the EOC was DFAA. This corresponded to about 2.4% of the DFAA pool. Bacterial productivity, determined by means of frequency of dividing cells and 35S-SO4 dark uptake techniques gave similar results and constituted 4.5 and 3.7 µg Cl–1 h–1 in Frederiksborg Slotssø and Lake Mossø, respectively. The bacterial productivity suggested that DFAA were essential substrates to the bacteria, especially in Frederiksborg Slotssø. The zooplankton biomass in Frederiksborg Slotssø was six times larger than that in Lake Mossø, but cladocerans were dominant in both lakes. The zooplankton grazing probably was an important regulatory factor for the bacterial productivity.  相似文献   

9.
Soda lakes are often characterized by high densities of prokaryotes and high concentrations of dissolved organic carbon. Since bacterial cell walls are less degradable than most other cell constituents, accumulation of cell wall material may occur in these lakes and contribute to the DOM pool, but composition of DOM in soda lakes has rarely been examined. Here we report concentrations of DOM components likely originating from bacterial cell walls, including D amino acids, glucosamine (GluA) and muramic acid (MurA), in depth profiles of stratified, alkaline, hypersaline Mono Lake, CA. Concentrations of cell wall components were related to total pools of dissolved free and combined amino acids (DFAA and DCAA), and bacterial density and production. In the free pool, total DFAA ranged from 50 to 3250 nM and typically increased with depth, while GluA (5 to 140 nM) and MurA (< 0.5 nM and only detected in 2005) fluctuated with depth. In the combined pool, DCAA varied between 5000 and 15000 nM and did not show clear depth-related trends. GluA ranged from 1000 to 5000 nM and tended to increase in the hypolimnion, while MurA varied between 25 and 75 nM. Free D isomers in the DFAA pool either made up < 13% (Asp and Ser) or varied from 10 to 57% (Glu and Ala). In the combined pool, D isomers of Asp, Glu, Ser and Ala made up 24-48% of these DCAA and typically showed minor changes with depth. In 2005, lysozyme activity had highest rates in the surface and correlated negatively with most D isomers among the combined amino acids. Our observations demonstrate that the pool of dissolved combined amino compounds in the lake was about 5-fold higher than in other eutrophic lakes and that a substantial portion of these amino compounds originated from bacterial cell walls.  相似文献   

10.
The net production of dissolved organic matter (DOM) and dissolved combined and free amino acids (DCAA and DFAA, respectively) by the hermatypic coral Acropora pulchra was measured in the submerged condition, and the production rates were normalized to the coral surface area, tissue biomass, and net photosynthetic rates by zooxanthellae. When normalized to the unit surface area, the production rates of dissolved organic carbon and nitrogen (DOC and DON, respectively) were 37 and 4.4 nmol cm− 2 h− 1, respectively. Comparing with the photosynthetic rate by zooxanthellae, which was measured by 13C-tracer accumulation in the soft tissue of the coral colony, the release rate of DOC corresponded to 5.4% of the daily net photosynthetic production. The tissue biomass of the coral colony was 178 µmol C cm− 2 and 23 µmol N cm− 2, indicating that the release of DOC and DON accounted for 0.021% h− 1 and 0.019% h− 1 of the tissue C and N, respectively. The C:N ratios of the released DOM (average 8.4) were not significantly different from those of the soft tissue of the coral colonies (average 7.7). While DFAA did almost not accumulate in the incubated seawater, DCAA was considerably released by the coral colonies at the rate of 2.1 nmol cm− 2 h− 1 on average. Calculating C and N contents of the hydrolyzable DCAA, it was revealed that about 20% and 50%–60% of the released bulk DOC and DON, respectively, were composed of DCAA.  相似文献   

11.
Dissolved free amino acid (DFAA) concentration and composition and dissolved organic carbon (DOC) concentration were measured over 16 months at three depths in hypertrophic Hartbeespoort Dam, South Africa and in its two perenially inflowing rivers. The range of DFAA concentrations in the reservoir and both rivers were similar with dominant DFAA consisting of serine, glycine, alanine and ornithine in all three systems. The range of DOC concentrations in the rivers was 1.5–11.1 mg l–1, the major river (Crocodile) having about twice the DOC concentration of the Magalies River. The DFAA/DOC ratios ranged between 0.02–1.1% in the Crocodile River and 0.13–3.7% in the Magalies River. DFAA and DOC concentrations were positively correlated to the Magalies River flow, but for the Crocodile River, which received domestic and industrial effluents, DOC was inversely correlated to flow. The source of DFAA in both rivers was mainly terrestrial, in contrast to the main DOC source in the Crocodile River which was the effluents. The DFAA load of the Crocodile River ranged between 0.22 and 208 kg C d–1.DOC (5.0–24.8mg l–1) in Hartbeespoort Dam generally decreased with depth but DFAA (15–4800 nmol l–1) concentration showed no clear trend. The DFAA/DOC ratios varied between 0.02 and 2.9%. DFAA concentrations were correlated (r = 0.3, n = 30, p = 0.04) with bacterial numbers at 0 and 10 m only while no significant correlations were found with bacterial production, chlorophyll a concentration and phytoplankton primary and EDOC (extracellular DOC) production at any depth. The rate of bacterial utilization of DFAA was low compared with data from other lakes. Diurnal phytoplankton production of DFAA in the euphotic zone of the whole lake was calculated to vary between 268 and 30 780 t C d–1 indicating autochthonous DFAA sources were dominant to allochthonous DFAA sources. The autochthonous production of DFAA was > 2 × gross bacterial production of the euphotic zone indicating that although DFAA concentrations were frequently < 10 g C l–1, the rate of DFAA production exceeded bacterial requirements.  相似文献   

12.
The regulation of the bacterial exoproteolytic activity, at natural substrate concentrations, was studied during the survey of an Atlantic coastal marine pond (France). The regulation of this activity occurs at two different levels: on the one hand, at the cellular level, the ectoenzyme synthesis is regulated by hydrolysis substrates, dissolved combined amino acids (DCAA), and end products, dissolved free amino acids (DFAA), in terms of the relative amounts available to the cell, and on the other hand, at the ecosystem level, i.e. the hydrolytic activity, by the total amounts of DCAA and DFAA in situ. The DFAA acts as an inhibitor in enzymatic synthesis; in contrast, dissolved proteins induce the enzymatic synthesis and the exoproteolytic activity. These results, obtained in natural concentration conditions, confirm the functioning in situ of the ectoenzymatic activity regulation model of Chróst, until now only validated in an enriched experimental medium.  相似文献   

13.
Fluxes of free amino acids in three Danish lakes   总被引:1,自引:0,他引:1  
SUMMARY. 1. Heterotrophic assimilation rates and concentrations of dissolved free amino acids (DFAA) were followed during diel studies in the eutrophic Lake Mossø, Lake Esrom and Lake øm in spring and summer in 1982. In all three lakes, three to four fold diel variations in concentrations and assimilation rates were measured. These fluctuations appeared to be iindependent of phytoplankton and bacteria production. Pools of DFAA varied from 380 nM (Lake Mossø) to 2430 nM (Lake ørn), with serine, glycine, alanine and ornithine as dominant free amino acids.
2. When similar water samples were incubated in a natural light-dark cycle or in total darkness, different pools of DFAA were measured in light and dark.
3. Decomposition of organic matter or zooplankton activity (rather than e.g. phytoplankton exudates) appear to be responsible for the concentration changes.
4. Observed discrepancies between simultaneous concentration changes and assimilation rates are discussed in relation to the applied tracer procedure and the concentration measurements.
5. Assimilation of DFAA sustained from 6% to 25% of the bacterial carbon requirement, corresponding to 2–12% of the phytoplankton production in the lakes.  相似文献   

14.
Algal production of dissolved organic carbon and the regeneration of nutrients from dissolved organic carbon by bacteria are important aspects of nutrient cycling in the sea, especially when inorganic nitrogen is limiting. Dissolved free amino acids are a major carbon source for bacteria and can be used by phytoplankton as a nitrogen source. We examined the interactions between the phytoplankton species Emiliania huxleyi and Thalassiosira pseudonana and a bacterial isolate from the North Sea. The organisms were cultured with eight different amino acids and a protein as the only nitrogen sources, in pure and mixed cultures. Of the two algae, only E. huxleyi was able to grow on amino acids. The bacterium MD1 used all substrates supplied, except serine. During growth of MD1 in pure culture, ammonium accumulated in the medium. Contrary to the expectation, the percentage of ammonium regenerated from the amino acids taken up showed no correlation with the substrate C/N ratio. In mixed culture, the algae grew well in those cultures in which the bacteria grew well. The bacterial yields (cell number) were also higher in mixed culture than in pure culture. In the cultures of MD1 and T. pseudonana, the increase in bacterial yield (number of cells) over that of the pure culture was comparable to the bacterial yield in mixed culture on a mineral medium. This result suggests that T. pseudonana excreted a more-or-less-constant amount of carbon. The bacterial yields in mixed cultures with E. huxleyi showed a smaller and less consistent difference than those of the pure cultures of MD1. It is possible that the ability of E. huxleyi to use amino acids influenced the bacterial yield. The results suggest that interactions between algae and bacteria influence the regeneration of nitrogen from organic carbon and that this influence differs from one species to another.  相似文献   

15.
Dissolved organic nitrogen (DON) can comprise up to 80% of the dissolved N pool in riverine ecosystems, but concentration and compositional responses to catchment conditions has received limited attention. We examined the suite of nitrogenous nutrients along the length of the Ovens River, Victoria, Australia, a river with identifiable regions of native vegetation, agricultural activity and floodplain forest connection, carrying out longitudinal surveys in winter during a period of high flow and in summer during a period of stable base flow. We examined: the concentrations of DON, the proportion of DON that occurs as dissolved combined amino acids (DCAAs), whether concentration and DCAA composition varied between flow and whether land-use and tributaries have an impact upon nutrient concentration and DON composition. DON concentrations were greater than dissolved inorganic nitrogen under both base flow and high flow conditions. Under base flow DON exhibited a continuous increase in concentration downstream (ranging from 50 to 300 μg/L), compared to a much larger increase under high flow (150–600 μg/L) coupled with a major discrete increase of ~?350 μg/L at a tributary input (King River). Concentrations of NOx (oxides of nitrogen) species were much higher under high flow conditions (range 50–250 μg/L) compared to 0–50 µg/L at base flow, and showed a significant increase in concentration with distance downstream. A discrete change in NOx concentrations was also observed at the King River confluence under high flow, although in this case causing a decrease in concentration of ~100 µg/L. DCAA concentrations varied little along the length of the river at base flow but increased with distance downstream at high flow. The DCAA concentrations were of the same order of magnitude as ammonium at both base and high flows and nitrate concentrations at base flow. The proportion of DON that was in the form of DCAA was reasonably uniform during high flow (3–6%), but highly variable at base flow (5–44%). The amino acid (AA) composition of the DCAA varied along the river and differed between flow regimes (except below the confluence with the King River where AA composition under the two flow conditions converged) suggesting a strong influence of land use. We show that DON is potentially a large component (4–81%) of the total N budget and given that 5–23% is in the form of peptide/protein, represents an important source of N. DON and more specifically DCAAs should therefore be considered both when constructing N budgets and monitoring levels of in-stream nitrogen.  相似文献   

16.
Through lysis of bacterioplankton cells, viruses mediate an important, but poorly understood, pathway of carbon and nutrients from the particulate to the dissolved form. Via this activity, nutrient-rich cell lysates may become available to noninfected cells and support significant growth. However, the nutritional value of lysates for noninfected bacteria presumably depends on the prevailing nutrient limitation. In the present study, we examined dynamics of dissolved DNA (D-DNA) and viruses along a transect in the phosphorus (P)-limited Ore Estuary, northern Baltic Sea. We found that viruses were an important mortality factor for bacterioplankton and that their activity mediated a significant recycling of carbon and especially of P. Uptake of dissolved DNA accounted for up to 70% of the bacterioplankton P demand, and about a quarter of the D-DNA pool was supplied through viral lysis of bacterial cells. Generally, the importance of viral lysates and uptake of D-DNA was highest at the estuarine and offshore stations and was positively correlated with P limitation measured as alkaline phosphatase activity. Our results highlight the importance of viral activity for the internal recycling of principal nutrients and pinpoints D-DNA as a particularly relevant compound in microbial P dynamics.  相似文献   

17.
In the Gulf of Bothnia, northern Baltic Sea, a large freshwater inflow creates north-southerly gradients in physico-chemical and biological factors across the two sub-basins, the Bothnian Bay (BB) and the Bothnian Sea. In particular, the sub-basins differ in nutrient limitation (nitrogen vs. phosphorus; P). Since viruses are rich in P, and virus production is commonly connected with bacterial abundance and growth, we hypothesized that the role of viral lysis differs between the sub-basins. Thus, we examined virus production and the potential importance of lysate recycling in surface waters along a transect in the Gulf of Bothnia. Surprisingly, virus production and total P were negatively correlated. In the BB, virus production rates were double those elsewhere in the system, although bacterial abundance and production were the lowest. In the BB, virus-mediated cell lysates could account for 70-180% and 100-250% of the bacterial carbon and P demand, respectively, while only 4-15% and 8-21% at the other stations. Low concentrations of dissolved DNA (D-DNA) with a high proportion of encapsulated DNA (viruses) in the BB suggested rapid turnover and high uptake of free DNA. The correlation of D-DNA and total P indicates that D-DNA is a particularly important nutrient source in the P-limited BB. Our study demonstrates large and counterintuitive differences in virus-mediated recycling of carbon and nutrients in two basins of the Gulf of Bothnia, which differ in microbial community composition and nutrient limitation.  相似文献   

18.
Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three particulate organic matter sources; riverine plankton (δ13C ?30 ‰ and δ15N 7.9 ‰) identified in the Thames estuary only, marine plankton (average δ13C ?21.4 ‰ and δ15N 4.5 ‰) and a third source with an enriched 13C signature (>?16.7 ‰) and elevated C:N ratio (>12.7). Particulate organic matter with enriched 13C values were observed throughout the Humber estuary and at the marine end-member of the Thames estuary. While bacterial cycling of organic carbon undoubtedly takes place within these estuaries, these processes on their own are unlikely to account for the isotopic signatures seen. The 13C enriched organic matter source is suggested to be due to particulate organic matter input from marsh plants and seagrasses such as Spartina spp. and Zostera on the adjacent salt marshes and mudflats and/or macroalgae along the banks of the estuaries. This 13C enriched signal was also identified approximately 50 km offshore within the southern North Sea, in the East Anglian plume, which transports UK riverine water off-shore in a discrete plume. This plume therefore provides a mechanism to transport this estuarine derived organic matter pool offshore out of the estuaries. These results indicate that estuarine derived organic matter from marsh plants, seagrasses and/or macroalgae contributes to the southern North Sea organic matter pool and is therefore likely to contribute to winter-time shelf sea carbon and nitrogen cycles.  相似文献   

19.
We have used a model food chain composed of a natural bacterial assemblage, a pennate diatom and a bacterivorous microflagellate to investigate the factors controlling the relative importance of bacteria and protozoa as sources for regenerated nitrogen in plankton communities. In bacterized diatom cultures in which diatom growth was nitrogen-limited, the carbon:nitrogen (C:N) ratio of the bacterial substrate greatly affected which population was responsible for the uptake of nitrogen. When nitrogen was added as NH 4 + and the cultures were supplemented with glucose, the bacteria competed successfully with the algae for NH 4 + and prevented the growth of algae by rapidly assimilating all NH 4 + in the cultures. Bacterivorous protozoa inoculated into these cultures grazed the bacterial population and remineralized NH 4 + , thus relieving the nitrogen limitation of algal growth and allowing an increase in algal biomass. In contrast, bacteria in cultures supplemented with the amino acid glycine (C:N = 2) were major remineralizers of nitrogen, and the influence of protozoan grazing was minimal. We conclude that the relative importance of bacteria and protozoa as nutrient regenerators in the detrital food loop is dependent largely on the overall carbon:nutrient ratio of the bacterial substrate. The role of bacterivorous protozoa as remineralizers of a growth-limiting nutrient is maximal in situations where the carbon:nutrient ratio of the bacterial substrate is high.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号