首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase alpha from Drosophila melanogaster embryos is a multisubunit enzyme complex which can exhibit DNA polymerase, 3'----5' exonuclease, and DNA primase activities. Pyridoxal 5'-phosphate (PLP) inhibition of DNA polymerase activity in this complex is time dependent and exhibits saturation kinetics. Inhibition can be reversed by incubation with an excess of a primary amine unless the PLP-enzyme conjugate is first reduced with NaBH4. These results indicate that PLP inhibition occurs via imine formation at a specific site(s) on the enzyme. Results from substrate protection experiments are most consistent with inhibition of DNA polymerase activity by PLP binding to either one of two sites. One site (PLP site 1) can be protected from PLP inhibition by any nucleoside triphosphate in the absence or presence of template-primer, suggesting that PLP site 1 defines a nucleotide-binding site which is important for DNA polymerase activity but which is distinct from the DNA polymerase active site. PLP also inhibits DNA primase activity of the DNA polymerase alpha complex, and primase activity can be protected from PLP inhibition by nucleotide alone, arguing that PLP site 1 lies within the DNA primase active site. The second inhibitory PLP-binding site (PLP site 2) is only protected from PLP inhibition when the enzyme is bound to both template-primer and correct dNTP in a stable ternary complex. Since binding of PLP at site 2 is mutually exclusive with template-directed dNTP binding at the DNA polymerase active site, PLP site 2 appears to define the dNTP binding domain of the active site. Results from initial velocity analysis of PLP inhibition argue that there is a rate-limiting step in the polymerization cycle during product release and/or translocation.  相似文献   

2.
HP0268 is a conserved, uncharacterized protein from Helicobacter pylori. Here, we determined the solution structure of HP0268 using three-dimensional nuclear magnetic resonance (NMR) spectroscopy, revealing that this protein is structurally most similar to a small MutS-related (SMR) domain that exhibits nicking endonuclease activity. We also demonstrated for the first time that HP0268 is a nicking endonuclease and a purine-specific ribonuclease through gel electrophoresis and fluorescence spectroscopy. The nuclease activities for DNA and RNA were maximally increased by Mn2+ and Mg2+ ions, respectively, and decreased by Cu2+ ions. Using NMR chemical shift perturbations, the metal and nucleotide binding sites of HP0268 were determined to be spatially divided but close to each other. The lysine residues (Lys7, Lys11 and Lys43) are clustered and form the nucleotide binding site. Moreover, site-directed mutagenesis was used to define the catalytic active site of HP0268, revealing that this site contains two acidic residues, Asp50 and Glu54, in the metal binding site. The nucleotide binding and active sites are not conserved in the structural homologues of HP0268. This study will contribute to improving our understanding of the structure and functionality of a wide spectrum of nucleases.  相似文献   

3.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

4.
5.
HIV-1 integrase (IN) is an essential enzyme for effective viral replication and is an attractive target for selective blockade of viral infection. Previously, we identified a series of sulfones, sulfonamides, and mercaptosalicylhydrazides (MBSAs) as IN inhibitors with antiviral activities in cell-based assays. In an effort to optimize a series of our active site directed lead compounds, we designed and synthesized novel benzodithiazines starting from MBSAs. In contrast to all reported IN inhibitors benzodithiazines are essentially nontoxic. Significant antiviral potency was only observed at concentration exceedingly higher than that required to inhibit purified IN.  相似文献   

6.
The integrase (IN) protein of the human immunodeficiency virus (HIV) mediates two distinct reactions: (i) specific removal of two nucleotides from the 3' ends of the viral DNA and (ii) integration of the viral DNA into target DNA. Although IN discriminates between specific (viral) DNA and nonspecific DNA in physical in vitro assays, a sequence-specific DNA-binding domain could not be identified in the protein. A nonspecific DNA-binding domain, however, was found at the C terminus of the protein. We examined the DNA-binding characteristics of HIV-1 IN, and found that a stable complex of IN and viral DNA is formed in the presence of Mn2+. The IN-viral DNA complex is resistant to challenge by an excess of competitor DNA. Stable binding of IN to the viral DNA requires that the protein contains an intact N-terminal domain and active site (in the central region of the protein), in addition to the C-terminal DNA-binding domain.  相似文献   

7.
Nuclear factor I is a 47-kd protein, isolated from nuclei of HeLa cells, that binds specifically to the inverted terminal repeat of the adenovirus (Ad) DNA and enhances Ad DNA replication in vitro. We have studied the DNA sequence specificity of nuclear factor I binding using cloned terminal fragments of the Ad2 genome and a set of deletion mutants. Binding of nuclear factor I protects nucleotides 19-42 of Ad2 DNA against DNase I digestion. Filter binding assays show that deletion of the first 23 nucleotides does not impair binding while a deletion of 24 nucleotides reduces binding severely. However, binding studies on Ad12 DNA indicate that nucleotide 24 can be mutated. Fragments containing the first 40 bp are bound normally while the first 38 bp are insufficient to sustain binding. Taken together, these results indicate that the minimal recognition site of nuclear factor I contains 15 or 16 nucleotides, located from nucleotide 25 to nucleotide 39 or 40 of the Ad2 DNA. This site contains two of the four conserved nucleotide sequences in this region. Sequences flanking the minimal recognition site may reduce the binding affinity of nuclear factor I. In accordance with these binding studies, DNA replication of a fragment that carries the sequence of the terminal 40 nucleotides of Ad2 at one molecular end is enhanced by nuclear factor I in an in vitro replication system.  相似文献   

8.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

9.
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80?bp). The protein also binds to a single-stranded DNA (OriS?) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3′-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5′- and 3′- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А?+?Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied.  相似文献   

10.
We have constructed an efficient expression plasmid for the leucine dehydrogenase gene previously cloned from Bacillus stearothermophilus. The recombinant enzyme was overproduced in Escherichia coli cells to a level of more than 30% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The enzyme could be readily purified to homogeneity by heat treatment and a single step of ion-exchange chromatography. The purified enzyme was inactivated in a time-dependent manner upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The inactivation was completely prevented in the copresence of L-leucine and NAD+. Concomitantly with the inactivation, several molecules of PLP were incorporated into each subunit of the hexameric enzyme. Sequence analysis of the fluorescent peptides isolated from a proteolytic digest of the modified protein revealed that Lys80, Lys91, Lys206, and Lys265 were labeled. Among these residues, Lys80 was predominantly labeled and, in the presence of L-leucine and NAD+, was specifically protected from the labeling. Furthermore, a linear relationship of about 1:1 was observed between the extent of inactivation and the amount of PLP incorporated into Lys80. A slightly active mutant enzyme, in which Lys80 is replaced by Ala, was not inactivated at all by incubation with PLP, showing that the inactivation is correlated with the labeling of only Lys80. Lys80is conserved in the corresponding regions of all the amino acid dehydrogenase sequences reported to date. These results suggest that Lys80 is located at the active site and plays an important role in the catalytic function of leucine dehydrogenase.  相似文献   

11.
The covalent binding of pyridoxal 5'-phosphate (PLP) to human serum albumin (HSA) is important in the regulation of PLP metabolism. In plasma, PLP is bound to HSA at a single high-affinity and at two or more nonspecific sites. To characterize the primary PLP binding site, HSA was incubated with [3H] PLP, and the Schiff base linkage was reduced with potassium borohydride. Tryptic peptides were purified, and the major labeled peptide was sequenced. Amino acid analysis confirmed a homogeneous peptide Leu-Asp-Glu-Leu-Arg-Asp-Glu-Gly-Xaa-Ala-Ser-Ser-Ala-Lys which corresponds to residues 182-195 of HSA. The data indicate that Lys190 is the primary PLP binding site. This Lys residue is distinct from other sites of covalent adduct formation; namely, the primary sites for nonenzymatic glycosylation (Lys525) and acetylation by aspirin (Lys199).  相似文献   

12.
In our previous report, one 34-bp sequence from a long terminal repeat (LTR) of human immunodeficiency virus type 1 (HIV-1) clone, loxLTR-1, was proposed as a target site for site-specific excision by modified Cre recombinase. To support this suggestion, an engineered lox sequence, designated loxIL1, was made. This variant lox has the corresponding sequence of loxLTR-1 at the spacer region and the last two bases of inverted repeat sequence. Through in vitro recombination assay, loxIL1 also allowed the wild-type Cre to specifically recombine the sequence. An in vitro DNA binding experiment with mutants CreK244R and CreK244L revealed that lysine 244 of Cre plays an important role in interaction with the engineered lox. This result suggests that loxLTR-1 would be a candidate for antiviral strategy using site-specific recombinase.  相似文献   

13.
Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147-166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (5CITEP, for instance), significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity.  相似文献   

14.
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.  相似文献   

15.
A Basu  P Kedar  S H Wilson  M J Modak 《Biochemistry》1989,28(15):6305-6309
Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase beta. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [3H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate.  相似文献   

16.
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.  相似文献   

17.
The integrase (IN) protein of human immunodeficiency virus type 1 (HIV-1) catalyzes site-specific cleavage of 2 bases from the viral long terminal repeat (LTR) sequence yet it binds DNA with little DNA sequence specificity. We have previously demonstrated that the C-terminal half of IN (amino acids 154-288) possesses a DNA binding domain. In order to further characterize this region, a series of clones expressing truncated forms of IN as N-terminal fusion proteins in E.coli were constructed and analyzed by Southwestern blotting. Proteins containing amino acids 1-263, 1-248 and 170-288 retained the ability to bind DNA, whereas a protein containing amino acids 1-180 showed no detectable DNA binding. This defines a DNA binding domain contained within amino acids 180-248. This region contains an arrangement of 9 lysine and arginine residues each separated by 2-4 amino acids (KxxxKxxxKxxxxRxxxRxxRxxxxKxxxKxxxK), spanning amino acids 211-244, which is conserved in all HIV-1 isolates. A clone expressing full-length IN with a C-terminal fusion of 16 amino acids was able to bind DNA comparably to a cloned protein with a free C-terminus, and an IN-specific monoclonal antibody which recognizes an epitope contained within amino acids 264-279 was unable to block DNA binding, supporting the evidence that a region necessary for binding lies upstream of amino acid 264.  相似文献   

18.
Retroviral integrase (IN) exhibits a previously unrecognized endonuclease activity which we have termed nonspecific alcoholysis. This action occurred at every position in nonviral DNA sequences except those near 5' ends and is clearly distinguished from, and was not predicted by, the site-specific alcoholysis activity previously described for IN at the processing site near viral DNA termini. The integrases of human immunodeficiency virus type 1, visna virus, and Rous sarcoma virus exhibited different target site preferences in this new assay. The isolated central domain of human immunodeficiency virus type 1 IN preferred the same sites as the full-length protein. Nonspecific alcoholysis may provide insights into the structure and function of IN and other endonucleases and suggests that stimulators of some activities possessed by retroviral enzymes should be sought as antiviral agents.  相似文献   

19.
Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3′ processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.  相似文献   

20.
A series of DNA substrates were synthesized to analyze the 3'-processing, integration and disintegration reactions taking place concurrently on the same DNA molecules and to evaluate the potential effects of various structural modifications of these molecules on the activities of HIV-1 integrase (IN). Our results indicate that DNA substrates containing multiple recognition sites for IN can produce efficiently the three activities of the enzyme. The 3'-processing and disintegration sites are recognized and processed by IN, both reactions being carried out in a competitive manner by the enzyme on the same DNA molecule. The presence of the gaps and unpaired nucleotides in the region surrounding the disintegration site had major deleterious effects on enzymes disintegration activity. Analysis of a different conformation at the base of the DNA hairpin has revealed a significant improvement of IN disintegration activity in the presence of double-stranded DNA on the 3' side of the disintegration site, suggesting that this region plays an important role in the stability of the enzyme-substrate complex. Interestingly, the efficiency of disintegration was strongly diminished in the presence of an unpaired nucleotide located immediately at the 3' end of the cleavage site. Overall, our results underline the extreme sensitivity of the HIV-1 IN to its substrates structure and conformation, especially for its disintegration activity, and the considerable importance of the disintegration activity in the reactions carried out in vitro by the purified enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号