首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Control of pyrimidine biosynthesis was examined in Pseudomonas mucidolens ATCC 4685 and the five de novo pyrimidine biosynthetic enzyme activities unique to this pathway were influenced by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. When uracil was supplemented to glucose-grown ATCC 4685 cells, activities of four de novo enzymes were depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the glucose-grown mutant strain cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase activities to increase by more than 3-fold while OMP decarboxylase activity increased by 2.7-fold. The syntheses of the de novo enzymes appeared to be regulated by pyrimidines. At the level of enzyme activity, aspartate transcarbamoylase activity in P. mucidolens ATCC 4685 was subject to inhibition at saturating substrate concentrations. Transcarbamoylase activity was strongly inhibited by UTP, ADP, ATP, GTP and pyrophosphate.  相似文献   

2.
Trypanosoma cruzi dihydroorotate dehydrogenase (DHOD), the fourth enzyme of the de novo pyrimidine biosynthetic pathway, is localized in the cytosol and utilizes fumarate as electron acceptor (fumarate reductase activity), while the enzyme from other various eukaryotes is mitochondrial membrane-linked. Here we report that DHOD-knockout T. cruzi did not express the enzyme protein and could not survive even in the presence of pyrimidine nucleosides, substrates for the potentially active salvage pathway, suggesting a vital role of fumarate reductase activity in the regulation of cellular redox balance. Cloning and phylogenetic analysis of euglenozoan DHOD genes showed that the euglenoid Euglena gracilis had a mitochondrial DHOD and that biflagellated bodonids, a sister group of trypanosomatids within kinetoplastids, harbor the cytosolic DHOD. Further, Bodo saliens, a bodonid, had an ACT/DHOD gene fusion encoding aspartate carbamoyltransferase (ACT), the second enzyme of the de novo pyrimidine pathway, and DHOD. This is the first report of this novel gene structure. These results are consistent with suggestions that an ancient common ancestor of Euglenozoa had a mitochondrial DHOD whose descendant exists in E. gracilis and that a common ancestor of kinetoplastids (bodonids and trypanosomatids) subsequently acquired a cytosolic DHOD by horizontal gene transfer. The cytosolic DHOD gene thus acquired may have contributed to adaptation to anaerobiosis in the kinetoplastid lineage and further contributed to the subsequent establishment of parasitism in a trypanosomatid ancestor. Different molecular strategies for anaerobic adaptation in pyrimidine biosynthesis, used by kinetoplastids and by euglenoids, are discussed. Evolutionary implications of the ACT/DHOD gene fusion are also discussed.Sequence availability: The nucleotide sequence data reported here appear in the GenBank, EMBL, and DDBJ databases with the accession numbers AB120414, AB159227, and AB159228 for Euglena gracilis dihydroorotate dehydrogenase (DHOD), Bodo saliens aspartate carbamoyltransferase/dihydroorotate dehydrogenase (ACT/DHOD), and B. caudatus DHOD, respectively.Reviewing Editor: Dr. Patrick Keeling  相似文献   

3.
A locus is described that controls levels of mitochondrial dihydroorotate dehydrogenase (EC 1.3.3.1) in Drosophila melanogaster. The effects of alleles of the locus, Dhod, are manifest in preparations from whole organisms as well as in partially purified mitochondrial preparations; however, other mitochondrial functions do not appear to be appreciably affected by Dhod genotypes. The locus maps near p in the proximal portion of the right arm of chromosome 3. Flies trisomic for a chromosome segment including that region display elevated enzyme levels, implying that an enzyme structural gene is in that vicinity. Furthermore, Dhod alleles are semidominant in heterozygotes, suggesting that the dosage-sensitive element detected in the trisomics is actually the Dhod locus. These findings are discussed relative to the role of dihydroorotate dehydrogenase in the de novo pyrimidine biosynthetic pathway and relative to other pathway mutants that have been described in Drosophila.This work was supported by NSF Grants PCM 76-17214 to W. Cohen and PCM 78-14164 To J. Rawls, as well as NIH Research Career Development Award 1 KO4 AM00676 to J. Rawls.  相似文献   

4.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

5.
The five de novo enzyme activities unique to the pyrimidine biosynthetic pathway were found to be present in Pseudomonas pseudoalcaligenes ATCC 17440. A mutant strain with 31-fold reduced orotate phosphoribosyltransferase (encoded by pyrE) activity was isolated that exhibited a pyrimidine requirement for uracil or cytosine. Uptake of the nucleosides uridine or cytidine by wild-type or mutant cells was not detectable; explaining the inability of the mutant strain to utilize either nucleoside to satisfy its pyrimidine requirement. When the wildtype strain was grown in the presence of uracil, the activities of the five de novo enzymes were depressed. Pyrimidine limitation of the mutant strain led to the increase in aspartate transcarbamoylase and dihydroorotate dehydrogenase activities by more than 3-fold, and dihydroorotase and orotidine 5-monophosphate decarboxylase activities about 1.5-fold, as compared to growth with excess uracil. It appeared that the syntheses of the de novo enzymes were regulated by pyrimidines. In vitro regulation of aspartate transcarbamoylase activity in P. pseudoalcaligenes ATCC 17440 was investigated using saturating substrate concentrations; transcarbamoylase activity was inhibited by Pi, PPi, uridine ribonucleotides, ADP, ATP, GDP, GTP, CDP, and CTP.  相似文献   

6.
二氢乳清酸脱氢酶是黄素依赖的线粒体酶,它催化嘧啶从头合成的第4步反应,将二氢乳清酸氧化为乳清酸。通过选择性抑制二氢乳清酸脱氢酶,从而抑制嘧啶的合成,已被开发用于治疗癌症、自身免疫性疾病、细菌或病毒感染以及寄生虫疾病等。抑制剂的开发需详细了解二氢乳清酸脱氢酶的结构特征和催化循环机制。因此,文中主要从这两个方面进行了综述,并展望了该酶的抑制剂在临床应用中的前景。  相似文献   

7.
Pyrimidine biosynthesis was investigated in Pseudomonas cepacia ATCC 17759. The presence of the de novo pyrimidine biosynthetic pathway enzyme activities was confirmed in this strain. Following transposon mutagenesis of the wild-type cells, a mutant strain deficient for orotidine 5-monophosphate decarboxylase activity (pyrF) was isolated. Uracil, cytosine or uridine supported the growth of this mutant. Uracil addition to minimal medium cultures of the wild-type strain diminished the levels of the de novo pyrimidine biosynthetic enzyme activities, while pyrimidine limitation of the mutant cells increased those de novo enzyme activities measured. It was concluded that regulation of pyrimidine biosynthesis at the lelel of enzyme synthesis in P. cepacia was present. Aspartate transcarbamoylase activity was found to be regulated in the wild-type cells. Its activity was shown to be controlled in vitro by inorganic pyrophosphate, adenosine 5-triphosphate and uridine 5-phosphate.  相似文献   

8.
Flies mutant for one or both of the last two enzymes of de novo pyrimidine biosynthesis express a number of phenotypes that are also expressed by mutants of the first four pathway enzymes (r and Dhod-null mutants). However, r-1 flies also express two phenotypes, mottled eyes and poor viability, that are not usually expressed by r and Dhod-null flies. Chemical determinations show that orotic acid, a substrate for the fifth pathway enzyme, accumulates in r-1 individuals but not in r and wild-type individuals. Moreover, flies simultaneously mutant for r and r-1 do not express the mottled-eye phenotype, showing that r is epistatic to r-1 for this r-1-specific phenotype. When genotypically wild-type flies are cultured on a medium containing 6-azauracil, the base of a potent inhibitor of the last enzyme of de novo pyrimidine biosynthesis, phenocopies are obtained that include the mottled-eye as well as the wing phenotypes of r-1 flies. These results support hypotheses that the phenotypes common to r, Dhod-null, and r-1 flies are consequences of uridylic acid deficiency, whereas the r-1-specific phenotypes result from orotic acid accumulation in flies lacking either or both of the last two enzymes of de novo pyrimidine biosynthesis.This research was supported by NSF Research Grant PCM 78-14164, an NSF predoctoral fellowship award to T. Conner, and an NIH research career development award to J. Rawls.  相似文献   

9.
10.
Summary Vestigial (vg) mutants of Drosophila melanogaster are characterized by atrophied wings. In this paper we show that: (1) aminopterin an inhibitor of dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase induce nicks in the wings of wild-type flies and phenocopies of the vg mutant phenotype when vg/+ and vg B/+ flies are reared on these substances (vgB is a deficiency of the vg locus). Only thymidine and thymidylate can rescue the flies from the effect of aminopterin. We propose that the vg phenotype is due to a decrease in the dTMP pool in the wings. (2) Mutant vg strains yield more offspring on medium containing aminopterin than on normal medium. The resistance of vg larvae to the inhibitor seems specific to the gene. This is the first case of aminopterin resistance in living eucaryotes. In contrast sensitivity of the vg larvae to FUdR is observed. (3) An increase in the activity and amount of DHFR is observed in mutant strains as compared with the wild-type flies.Our data suggest that the vg + gene is a regulatory gene acting on the DHFR gene or a structural gene involved in the same metabolic pathway.  相似文献   

11.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

12.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

13.
Clinically relevant inhibitors of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in mammalian de novo pyrimidine synthesis, have strong antiviral and anticancer activity in vitro. However, they are ineffective in vivo due to efficient uridine salvage by infected or rapidly dividing cells. The pyrimidine salvage enzyme uridine-cytidine kinase 2 (UCK2), a ∼29 kDa protein that forms a tetramer in its active state, is necessary for uridine salvage. Notwithstanding the pharmacological potential of this target, no medicinally tractable inhibitors of the human enzyme have been reported to date. We therefore established and miniaturized an in vitro assay for UCK2 activity and undertook a high-throughput screen against a ∼40,000-compound library to generate drug-like leads. The structures, activities, and modes of inhibition of the most promising hits are described. Notably, our screen yielded non-competitive UCK2 inhibitors which were able to suppress nucleoside salvage in cells both in the presence and absence of DHODH inhibitors.  相似文献   

14.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

15.
We show that six mapped recessive lethal point mutations of the Notch locus affect mitochondrial enzyme activities: NADH oxidase, NADH dehydrogenase, succinate dehydrogenase and α-glycerophosphate dehydrogenase. The mutant N264-40, which has the same morphological and embryological effects as the Notch8 deletion, demonstrates the same biochemical effects and dosage relations as Notch8. The other five mapped recessive lethals also affect four enzymic activities. They show specific patterns of activity that depend in several cases on the wild-type chromosome in the heterozygous females. That effect occurs with mutants located in the extreme right part of the Notch locus where some mutations, according to other authors, show temperature-sensitive expression.  相似文献   

16.
Alcohol dehydrogenase of Drosophila melanogaster catalyzes the oxidation of many primary and secondary alcohols. We show that sarcosine, choline and dihydroorotate are substrates of ADH in vitro. The first two substrates are regular substrates of the choline shunt, and the latter of the de novo pyrimidine synthesis. Differences in oxidative ability towards sarcosine and dihydroorotate between two ADH allozymes, ADH71k and ADHF, are observed. The catalytic activity of ADH71k towards sarcosine and dihydroorotate might be responsible for its allelic fixation in Notch8 mutant stocks, in which Notch females have a decreased level of the regular enzymes for these substrates. Their oxidation by ADH71k might act as a bypass, which restores at least part of the decreased activity of enzymes encoded by the Notch locus.  相似文献   

17.
A deficiency in the production of -alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to -alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to -alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the -alanine pool. Normalization of the black phenotype results.  相似文献   

18.
Control of pyrimidine formation was examined in Pseudomonas fulva ATCC 31418. Pyrimidine supplementation lowered pyrimidine biosynthetic pathway enzyme activities in cells grown on glucose or succinate as a carbon source indicating possible repression of enzyme synthesis. Pyrimidine limitation experiments were conducted using an orotidine 5′-monophosphate decarboxylase mutant strain isolated in this study. Compared to uracil-supplemented, glucose-grown mutant cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase activities to increase about 6-, 13-, 3-, 15-fold, respectively, which confirmed regulation of enzyme synthesis by pyrimidines. At the level of enzyme activity, transcarbamoylase activity in Ps. fulva was strongly inhibited by pyrophosphate, CTP, GTP and GDP under saturating substrate concentrations.  相似文献   

19.
Reductive catabolism of the pyrimidine bases uracil and thymine was found to occur in Pseudomonas putida biotype B. The pyrimidine reductive catabolic pathway enzymes dihydropyrimidine dehydrogenase, dihydropyrimidinase and N-carbamoyl--alanine amidohydrolase activities were detected in this pseudomonad. The initial reductive pathway enzyme dihydropyrimidine dehydrogenase utilized NADH or NADPH as its nicotinamide cofactor. The source of nitrogen in the culture medium influenced the reductive pathway enzyme activities and, in particular, dihydropyrimidinase activity was highly affected by nitrogen source. The reductive pathway enzyme activities in succinate-grown P. putida biotype B cells were induced when uracil served as the nitrogen source.  相似文献   

20.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号