首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background  

In microarray experiments the numbers of replicates are often limited due to factors such as cost, availability of sample or poor hybridization. There are currently few choices for the analysis of a pair of microarrays where N = 1 in each condition. In this paper, we demonstrate the effectiveness of a new algorithm called PINC (PINC is Not Cyber-T) that can analyze Affymetrix microarray experiments.  相似文献   

2.
Endodormant grapevine buds require a period of chilling before they break and begin to grow. Custom Vitis bud cDNA microarrays (9,216 features) were used to examine gene expression patterns in overwintering Vitis riparia buds during 2,000 h of 4°C chilling. Three-node cuttings collected concurrently with buds were monitored to determine dormancy status. Chilling requirement was fulfilled after 1,500 h of chilling; however, 2,000 h of chilling significantly increased the rate of bud break. Microarray analysis identified 1,469 significantly differentially expressed (p value < 0.05) array features when 1,000, 1,500, and 2,000 h of chilling were compared to 500 h of chilling. Functional classification revealed that the majority of genes were involved in metabolism, cell defense/stress response, and genetic information processing. The number of significantly differentially expressed genes increased with chilling hour accumulation. The expression of a group of 130 genes constantly decreased during the chilling period. Up-regulated genes were not detected until the later stages of chilling accumulation. Hierarchical clustering of non-redundant expressed sequence tags revealed inhibition of genes involved in carbohydrate and energy metabolism and activation of genes involved in signaling and cell growth. Clusters with expression patterns associated with increased chilling and bud break were identified, indicating several candidate genes that may serve as indicators of bud chilling requirement fulfillment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
Dual-channel long oligonucleotide microarrays are in widespread use. Although much attention has been given to proper experimental design and analysis regarding long oligonucleotide microarrays, relatively little information is available concerning the optimization of protocols. We carried out a series of microarray experiments designed to investigate the effects of different levels of target concentration and hybridization times using a long oligonucleotide library. Based on principles developed from nucleic acid renaturation kinetics studies, we show that increasing the time of hybridization from 18 h to 42 h and 66 h, especially when lower than optimal concentrations of target were used, significantly improved the quality of the microarray results. Longer hybridization times significantly increased the number of spots detected, signal-to-noise ratios, and the number of differentially expressed genes and correlations among replicate arrays. We conclude that at 18 h of incubation, target-to-probe hybridization has not reached equilibrium and that a relatively high proportion of nonspecific hybridization occurs. This result is striking, given that most, if not all, published microarray protocols stipulate 8-24 h for hybridization. Using shorter than optimal hybridization times (i.e., not allowing hybridization to reach equilibrium) has the consequence of underestimating the fold change of differentially expressed genes and of missing less represented sequences.  相似文献   

6.
7.
8.

Background  

Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations.  相似文献   

9.
Wang Y  Wang X  Guo SW  Ghosh S 《BioTechniques》2002,32(6):1342-1346
We derived a theoretical model that explains certain biases observed in the two-color microarray hybridization experiments reported in the literature. We show that true competition is achieved only when the hybridization kinetics of the two differentially labeled probes are the same. If the hybridization kinetics of the two differentially labeled probes is different, which can occur when the labeling and hybridization conditions for the two probes are dissimilar, then differential expression observed becomes a function of the amount of the target (i.e., DNA spotted on the slide). We use this model to validate the microarray methodology by determining the differential expression of four select Arabidopsis genes and two human genes (beta-actin and GAPDH) as a function of the amount of target arrayed. We show through both modeling and experiments that the rate constants for Cy5- and Cy3-labeled probes are the same under our exrimental conditions. Therefore, the target concentrations need not greatly exceed the probe concentration. It is obvious from the data presented that a simple treatment of an individual hybridization rate calculation does notfully describe what is occuring in today's complex, multispecies experiments. The method of validation is easily implemented to ensure data reliability by two-color microarray.  相似文献   

10.

Background  

To identify differentially expressed genes across experimental conditions in oligonucleotide microarray experiments, existing statistical methods commonly use a summary of probe-level expression data for each probe set and compare replicates of these values across conditions using a form of the t-test or rank sum test. Here we propose the use of a statistical method that takes advantage of the built-in redundancy architecture of high-density oligonucleotide arrays.  相似文献   

11.
12.
High-density arrays of DNA bound to solid substrates offer a powerful approach to identifying changes in gene expression in response to toxicants. While DNA arrays have been used to explore qualitative changes in gene regulation, less attention has focused on the quantitative aspects of this technology. Arrays containing expressed sequence tags for xenobiotic metabolizing enzymes, proteins associated with glutathione regulation, DNA repair enzymes, heat shock proteins, and housekeeping genes were used to examine gene expression in response to beta-naphthoflavone (beta-NF). Upregulation of cytochrome P4501a1 (Cyp1a1) and 1a2 in mouse liver was maximal 8 h after beta-NF administration. Significant upregulation of Cyp1a2 was noted at beta-NF doses as low as 0.62 and 1.2 mg/kg when gene expression was measured by microarray or Northern blotting, respectively. Maximal Cyp1a2 induction is 5-fold by Northern analysis and 10-fold by microarray. Induction of Cyp1a1 was 15- and 20-fold by Northern and microarray analysis, respectively. The coefficient of variation for spot to spot and slide to slide comparisons was <15%; this variability was smaller than interanimal variability (18-60%). Comparison of mRNA expression in control animals indicated that there are differences in labeling/detection associated with Cy3/Cy5 dyes; accordingly, experiments must include methods for establishing baseline signals for all genes. We conclude that the dynamic range and sensitivity of DNA microarrays on glass slides is comparable to Northern blotting analysis and that variability of the data introduced during spotting and hybridization is less than the interanimal variability.  相似文献   

13.
14.

Background  

Analysis of variance is a powerful approach to identify differentially expressed genes in a complex experimental design for microarray and macroarray data. The advantage of the anova model is the possibility to evaluate multiple sources of variation in an experiment.  相似文献   

15.
Tissue microarrays are ordered arrays of hundreds to thousands of tissue cores in a single paraffin block. We invented a novel method to make a high-throughput microarray group. Conventional smaller tissue microarrays were made first and then sectioned. Separate paraffin films were arrayed orderly onto a regular-sized glass slide to form a larger microarray group. Sections were not floated in a water bath but, rather, were cut singly using conventional microtome, arrayed orderly onto the glass slide with forceps instead of using a tape-based tissue transfer system, and then unfolded with warm water (46° C) using a micropipette. This not only lowers the difficulty in sectioning but the overall tissue disks can be included in the same section. A microarray group of 2,534 small disks (theoretically, 2,560 disks can be made; 26 fell off during the procedure), the most up to now, was successfully made and may be used in immunohistochemistry, mRNA in situ hybridization, and flourescent in situ hybridization.  相似文献   

16.
17.

Background  

An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected.  相似文献   

18.

Background  

Systems biology modeling from microarray data requires the most contemporary structural and functional array annotation. However, microarray annotations, especially for non-commercial, non-traditional biomedical model organisms, are often dated. In addition, most microarray analysis tools do not readily accept EST clone names, which are abundantly represented on arrays. Manual re-annotation of microarrays is impracticable and so we developed a computational re-annotation tool (ArrayIDer) to retrieve the most recent accession mapping files from public databases based on EST clone names or accessions and rapidly generate database accessions for entire microarrays.  相似文献   

19.

Background  

Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome.  相似文献   

20.
Microarray technique was used to analyze the gene expression profiles of shrimp when they were challenged by WSSV and heat-inactivated Vibrio anguillarum, respectively. At 6 h post challenge (HPC), a total of 806 clones showed differential expression profile in WSSV-challenged samples, but not in Vibrio-challenged samples. The genes coding energy metabolism enzyme and structure protein were the most downregulated elements in 6 h post WSSV-challenged (HPC-WSSV) tissues. However, a total of 155 clones showed differential expression in the Vibrio-challenged samples, but not in WSSV-challenged samples. Serine-type endopeptidase and lysosome-related genes were the most upregulated elements in tissues 6 h post Vibrio challenge (HPC-Vibrio). Totally, 188 clones showed differential expression in both 6 and 12 HPC-WSSV and HPC-Vibrio samples. Most of the differentially expressed genes (185/188) were downregulated in the samples of 12 HPC-WSSV, whereas upregulated in the samples at 6 and 12 HPC-Vibrio and 6 HPC-WSSV. The expression profiles of three differentially expressed genes identified in microarray hybridization were analyzed in hemocytes, lymphoid organ, and hepatopancreas of shrimp challenged by WSSV or Vibrio through real-time PCR. The results further confirmed the microarray hybridization results. The data will provide great help for us in understanding the immune mechanism of shrimp responding to WSSV or Vibrio. Wang and Li contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号