首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell disruption studies for the extraction of HBsAg from a recombinant P. pastoris strain (r-HBsAg) were done using a bead mill disintegrator. Three sequential passages (4 min retention time each) were enough to disrupt the cells and extract most of the r-HBsAg and soluble proteins. An acid precipitation step was performed just after cell disruption to precipitate proteins together with the cell debris. Different precipitation pH values (2.5 to 6.0) were investigated. A pH value of 4.2 was selected as a compromise between recovery and improvement of specific activity. A 6 to 8-fold enhancement of the specific activity was obtained, having a r-HBsAg overall yield of about 80%. The influencing presence of a chaotropic salt (potassium thiocyanate) during the acid precipitation step was also studied.  相似文献   

2.
Recombinant hepatitis B surface antigen (r-HBsAg) produced in yeast is adsorbed on a diatomaceous earth matrix for purification purposes. A pH dependence in the adsorption-elution behavior was found. The capacity of celite (Hyflo Super Cei) for adsorbing r-HBsAg increased with decreasing pH. Nonspecific proteins were also adsorbed, but a low pH dependence was found. Elution from the matrix was performed using a basic pH buffer, in which r-HBsAg is more specifically adsorbed/desorbed than contaminant proteins, permitting the purification of the r-HBsAg. A pH of 4.0 was used for adsorption and pH 8.2 was used for desorption. The described protocol allows a purification factor between three- and fivefold with respect to contaminant proteins and sixfold with respect to contaminant DNA. Finally, the adsorption step was successfully scaled-up for production purposes. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
4.
In the present study mAb were derived against flow cytometry (FCM) purified fish (Ictalurus punctatus) nonspecific cytotoxic cells (NCC). mAb 5C6.10.4 and 6D3.2.10 produced 60 to 65% inhibition of lysis of NC-37 target cells (a human B-lymphoblastoid cell line) by unfractionated NCC. mAb 2B2.4.9 and 6D3.4.4 were noninhibitors of cytotoxicity. All mAb were the same isotype (IgM) and were cloned by limiting dilution (2x). Inhibitory activity was specific for the effector cells because the mAb had no effect on NCC cytotoxicity when only the target cells were treated. Inhibition could be produced by preincubation of the mAb with NCC or by no preincubation, and inhibition was not reversible. Killing by FCM-sorted NCC of NC-37 target cells was inhibited almost 100% by mAb 5C6.10.4. Inhibitor mAb also significantly reduced NCC killing of MOLT-4, K562, P815, U937, Daudi, YAC-1, and HL-60 cells. Experiments also were conducted to determine at which stage of the lytic cycle the mAb acted. Both inhibitor mAb significantly inhibited conjugate formation between effector and NC-37 target cells. The technique of FCM was combined with competitive binding experiments to determine that the Ag recognized by both inhibitor and noninhibitor mAb was found on the membranes of the same cells. These results were confirmed by demonstrating (by using FCM) that FITC-labeled inhibitor and biotinylated noninhibitor mAb bound to the same cells. FCM also was next used to determine mAb binding to various effector cell populations. Inhibitor and noninhibitor mAb bound to approximately 25% (5C6.10.4) and 39% (6D3.4.4) of fish anterior kidney cells; to 42% (5C6.10.4) and 54% (6D3.4.4) of fish spleen cells; and to 2.5% (5C6.10.4 and 6D3.4.4) of fish peripheral blood. mAb were used to purify the target cell binding structure found on NCC. Con A-Sepharose purified mAb were used as the fixed ligand for Affi-Gel-10 affinity chromatography experiments. FCM-purified NCC were solubilized and the receptor was purified by using this technique. Analysis of the NCC-purified receptor by 12% SDS-PAGE indicated that the mAb purified structure may be composed of a dimeric molecule consisting of 41 kDa and 38 kDa proteins. The same dimer was purified by using either inhibitory (6D3.2.10) or noninhibitory (6D3.4.4) mAb. Similar results were obtained with immunoprecipitation experiments by using mAb 5C6.10.4. These studies demonstrate that the Ag-binding receptor structure on fish NCC may be comprised of a dimeric complex.  相似文献   

5.
Four mAb able to recognize transforming growth factor-beta 2 (TGF-beta)2 were obtained. One of these mAb, 1D11.16, was able to neutralize the biological activity of both TGF-beta 1 and beta 2 in vitro. This was demonstrated in an Il-1, PHA-dependent thymocyte mitogenic assay that is inhibitable by TGF-beta in a dose-dependent manner. All four mAb recognized the dimeric form of TGF-beta 2 in Western blots. The mAb were also found to immunoprecipitate [125I]-TGF-beta 2. mAb 3C7.14 coupled to Sepharose could efficiently immunoaffinity purify TGF-beta 2 from a complex mixture of proteins. Affinity constants were determined for the four mAb and they ranged from 3.4 x 10(8) to 1.6 x 10(7) L/mol.  相似文献   

6.
We developed a simple purification method to purify alkaline phosphatase/anti-alkaline phosphatase IgG as immune complexes using mimetic affinity chromatography wherein the antibody was either a monospecific antibody, a bispecific antibody or a commercial polyclonal IgG conjugated with alkaline phosphatase (AP–IgG) covalently. The immune complexes or conjugates were efficiently bound on the mimetic Blue A6XL column and eluted under mild conditions (5–20 mM phosphate buffer). A similar strategy of purifying peroxidase/anti-peroxidase antibody complexes was also successfully demonstrated using the mimetic Red 3 column. Mimetic affinity chromatography thus appears to be a simple method to purify the desired monospecific or bispecific antibodies from the respective hybridomas and quadromas.  相似文献   

7.
The monoclonal antibody (mAb) CO17‐1A specifically binds to the tumor‐associated cell surface glycoprotein GA733 in colorectal cancer cells. Thus, mAb CO17‐1A has the potential to act as an immune therapeutic protein against colorectal cancer. Recently, it was shown that the baculovirus insect cell expression system produces anti‐colorectal cancer mAb CO17‐1A. In this study, the colorectal cancer antibody mAb CO17‐1A fused to the endoplasmic reticulum (ER) retention signal sequence (KDEL), and the (mAb CO17‐1AK) was expressed in Spodoptera frugiperda Sf9 insect cells. The yield, cell cytotoxicity, and in vitro anti‐tumor activity of mAb CO17‐1AK were verified. Western blotting was performed to confirm that both heavy and light chains of mAb CO17‐1A were expressed in Sf9 insect cells. The insect‐derived mAb (mAbI) CO17‐1A was purified using a protein G affinity column. An in vitro wound healing assay was conducted to determine the inhibition activity of mAb CO17‐1A during tumor cell migration, showing that mAbI CO17‐1AK was effective as mammalian‐derived mAb CO17‐1A (mAbM CO17‐1A). These results suggest that the insect cell expression system can produce and properly assemble mAbs that inhibit tumor cell migration.  相似文献   

8.
A scaleup study of the radial streaming chromatography (ZetaPrep technique) using hybridoma culture supernatant as model protein solution is described in this article. Lab and pilot cartridges were tested. Scaleup factors were calculated from the lab experiments and compared to the data obtained at pilot level. The procedure consists of three different steps: microfiltration, diafiltration, and the ZetaPrep technique using QAE cartridges. Diafiltration was used to condition the clarified culture supernatant. Calculating the elution volumes for the pilot level (ZetaPrep 800) from the smallest lab cartridge (ZetaPrep 15), a difference between calculated and experimental values of 230% was obtained. The difference between calculated and experimental values using results from ZetaPrep 100, a preparative cartridge, was 120%. At pilot level it is possible to purify 10 L culture supernatant within 3 h including regeneration and reequilibration of the cartridge. This procedure is useful for monoclonal antibodies (mAb) with a low isoelectric point (pl). The pl's of the mAb which was used in this work are in the range 5.4-6.1.  相似文献   

9.
The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1–14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1–6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1–7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.  相似文献   

10.
The protein-free medium TurboDoma HP.1 (THP.1) was used to produce the CB.Hep-1 monoclonal antibody (mAb) in a CP-1000 hollow fiber bioreactor (HFB). This mAb is used for the immunopurification of recombinant hepatitis B surface antigen (rHBsAg), which is included in a vaccine preparation against the Hepatitis B Virus. By using the experimental conditions tested in this work we were able to generate more than 433 mg of IgG in 43 days. The maximum antibody concentration obtained was about 2.4 mg ml-1and the IgG production per day was approximately 11 mg of monoclonal antibody, which constitutes a good concentration value in comparison to the results obtained in ascitic fluid, where concentration for this hybridoma was around 3 mg ml-1. We used different analytical methods to control the quality of mAbs, obtained from the in vitro system. They included affinity constant determination, analysis of N-glycan structures, immunoaffinity chromatography and antigen binding properties. The results obtained suggest that no significant changes occurred in the mean characteristics of the mAb harvested from the bioreactor during the 43 days of cultivation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Monoclonal antibodies (mAbs) to chick choline acetyltransferase (ChAT) were obtained from mouse-hybridoma cultures after immunization with partially purified enzyme isolated from optic lobes. Antibodies that bound active enzyme were detected in 11 hybridoma cultures. The mAbs showed cross-reactivity to ChAT from quail and beef but not to ChAT from several other species. An affinity column prepared with one of the mAbs was used to purify ChAT to apparent homogeneity. Polyclonal antiserum to mAb affinity-purified ChAT was produced in a rabbit. This antiserum inhibited chick ChAT activity and quantitatively precipitated ChAT activity from solution. On immunoblots, the antiserum stained ChAT and two other proteins. After preadsorption of the antiserum with effluent from the mAb affinity column, the antiserum became monospecific for ChAT. This antiserum was useful for immunocytochemical localization of ChAT, it selectively stained neuronal cell bodies in chick spinal cord and rat brain at locations known to contain cholinergic neurons.  相似文献   

12.
13.
Weak partitioning chromatography (WPC) has been proposed for the purification of monoclonal antibodies using an anion exchange (AEX) resin to simultaneously remove both acidic and basic protein impurities. Despite potential advantages, the relationship between resin structure and WPC performance has not been evaluated systematically. In this work, we determine the structure of representative AEX resins (Fractogel® EMD TMAE HiCap, Q Sepharose FF, and POROS 50 HQ) using transmission electron microscopy and inverse size exclusion chromatography and characterize protein interactions while operating these resins under WPC conditions using two mAb monomers, a mAb dimer, mAb multimers, and BSA as model products and impurities. We determine the isocratic elution behavior of the weakly bound monomer and dimer species and the adsorptive and mass transfer properties of the strongly bound multimers and BSA by confocal laser scanning microscopy. The results show that for each resin, using the product Kp value as guidance, salt, and pH conditions can be found where mAb multimers and BSA are simultaneously removed. Isocratic elution and adsorption mechanisms are, however, different for each resin and for the different components. Under WPC conditions, the Fractogel resin exhibited very slow diffusion of both mAb monomer and dimer species but fast adsorption for both mAb multimers and BSA with high capacity for BSA, while the Sepharose resin, because of its small pore size, was unable to effectively remove mAb multimers. The POROS resin was instead able to bind both multimers and BSA effectively, while exhibiting a greater resolution of mAb monomer and dimer species. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:425–434, 2017  相似文献   

14.
Stage-specific mAb have been produced to amastigotes and epimastigotes of Trypanosoma cruzi (Brazil strain). mAb C-1 through C-6 reacted specifically with T. cruzi strains; no cross-reactions were found with membranes of promastigotes or amastigotes of Leishmania species. One mAb produced against the epimastigote membranes (C-5) was found to be specific against this stage by radioimmune binding assay, immunofluorescence, and radioimmunoprecipitation. mAb C-5 recognized a novel epimastigote protein at Mr (greater than 200,000) on immunoprecipitation with radiolabeled epimastigotes. Three amastigote stage-specific monoclonal antibodies were produced against membrane-enriched preparations of T. cruzi (Brazil strain) amastigotes grown in axenic culture (C-1 through C-3). By indirect immunofluorescence assay, monoclonal antibody C-2 bound only to T. cruzi amastigotes; no reaction with either tissue culture-derived trypomastigotes or epimastigotes was observed. mAb C-1 and C-2 each specifically immunoprecipitated a single protein molecule with Mr 83,000 from [35S]-methionine-labeled amastigotes. mAb C-2 was also used to affinity purify an 83-kDa Ag that was recognized by human Chagasic sera from patients of endemic countries of Latin America in an enzyme immunoassay. Amino acid composition and preliminary sequence data of the 83-kDa protein are presented. These mAb and/or purified Ag may be useful in studying stage differentiation, monitoring transformation, and for further taxonomic, epidemiologic, and immunologic studies of Chagas' disease.  相似文献   

15.
Active eukaryotic RNA polymerase II (RNAP II) was purified by immunoaffinity chromatography, using a monoclonal antibody (mAb) that reacts with the highly conserved heptapeptide repeat of the largest subunit. This mAb (designated SWG16) was conjugated to CNBr-activated Sepharose and used to purify RNAP II from wheat germ and calf thymus. The subunit composition of the immunoaffinity-purified enzyme was essentially the same as RNAP II purified by conventional chromatography except that it contained only the form with the unproteolyzed largest subunit. Active enzyme could be eluted from the SWG16-Sepharose, at pH 7.9, with combinations of low molecular weight polyols and nonchaotropic salts. The superior eluting procedure used combinations of ethylene glycol (30-40%) and ammonium sulfate (0.5-0.75 M). Active enzyme also could be eluted with a synthetic peptide containing four repeats of the heptapeptide; however, the peptide was not as effective as the polyol and salt combinations for eluting the enzyme. This mAb should be useful for purifying RNAP II from many eukaryotic species. Because the elution of enzyme from the immunoadsorbent seems to be dependent upon the presence of a polyol, this antibody is referred to as a "polyol-responsive mAb." A procedure that helps to identify a polyol-responsive mAb and to optimize the eluting conditions is described. Polyol-responsive mAbs might have broad applicability to the purification of many labile enzymes by immunoaffinity chromatography.  相似文献   

16.
A rat IgG2a monoclonal antibody (mAb3A33) directed against the mouse Mac-1 antigen was conjugated with muramyl dipeptide (MDP) by using an intermediate polymer; under such conditions 75 MDP molecules were bound to one antibody molecule. A poly(L-lysine) polymer substituted with muramyl dipeptide and 3-(2-pyridyldithio)propionyl residues were prepared, the remaining lysine epsilon-amino groups were acylated with D-gluconolactone, leading to a neutral polymer; then a few polymer conjugates were coupled to mAb3A33 via a disulfide bridge. The binding capacity of the monoclonal antibody was preserved after conjugation with MDP-polymer molecules. Mouse peritoneal macrophages, incubated for 24 h with MDP-mAb3A33 conjugate became cytostatic against P815 mastocytoma cells, whereas unconjugated mAb3A33 and MDP-bound to a nonspecific rat IgG2a were ineffective. An enhancement of the cytostatic activity induced by MDP-mAb3A33 conjugate was obtained in the presence of gamma-IFN. These results show that several tens of MDP molecules can be linked to a macrophage-specific monoclonal antibody by using a neutral intermediate polymer without impairing the binding antibody capacity and that this type of MDP conjugate can efficiently activate macrophages and therefore could be the basis of the development of new antitumor therapy.  相似文献   

17.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

18.
A general approach for anti-hapten antibody purification utilizing double-modified albumins is presented. Purification is based on simultaneous modification of an albumin with a hapten (e.g. fluorescein) and desthiobiotin. Three distinct albumins (BSA, HSA and ovalbumin) were modified accordingly and evaluated for their ability to purify the anti-fluorescein mAb from a mixture of commercial preparation and an E. coli cell lysate. The recovered mAb was obtained at relatively high purity (88–95%), in a wide range of target concentrations (0.66–0.02 mg/ml) within a total purification time of ∼ 20 min. Substantial increase in the contamination background did not affect purity.  相似文献   

19.
Ceramic hydroxyapatite (CHT) high-performance liquid chromatography (HPLC) is used to purify a variety of classes of monoclonal antibodies (mAbs) from crude murine ascites fluids. We report here that this method is also applicable for simple and efficient purification of many mAb fragments that are generated by pepsin treatment of crude ascites. F(ab')(2) fragments were quantitatively generated from IgG(1) mAbs in ascitic fluids by incubation with pepsin for 6 h at pH 3.9-4.1. Under the same conditions, pepsin also cleaved unwanted ascites components, such as albumin and transferrin to very low molecular weight polypeptides. The F(ab')(2) fragments, but not the low molecular weight products, selectively bound to and were eluted from the CHT column using a linear gradient of phosphate ion concentration over 15 min. The recovery of the F(ab')(2) fragments by CHT-HPLC was >90%. This method also allowed single-step purification of mAb fragments from distinct IgG subclasses (IgG(2a) and IgG(2b)) and IgM directly from crude digested ascitic samples. This CHT-HPLC method combined with direct pepsinolysis of murine ascites is a useful strategy for rapid purification and characterization of many types of mAb fragments.  相似文献   

20.
Melanomas and other cancers of neuroectodermal origin express multiple cell-surface gangliosides in patterns that vary significantly even within the same tumor type. Monoclonal antibodies (mAb) against four of these gangliosides (GM2, GD2, 9-O-acetyl-GD3 and GD3) were tested alone and in combination on 14 tumor cell lines (7 melanomas, 3 neuroblastomas, 3 sarcomas and 1 astrocytoma) using flow cytometry and complement-dependent cytotoxicity (CDC) assays. Increased tumor cell recognition and CDC resulting from the combination of three or four mAb were found in 14/14 tested cell lines, and this was most striking when each mAb was used at suboptimal concentration. At these concentrations, the average mean fluorescence intensity of the 14 cell lines with individual mAb was between 3.0 and 6.8 and increased to 10.8 and 18.8 with the three- and four-mAb mixtures. The average percentage CDC-specific release with individual mAb was 2.0%–8.3%, and 12.3% and 16.6% with the three- and four-mAb combinations. The number of cell lines showing significant mean fluorescence intensity and CDC increased from 2–8/14 with single mAb to 13–14/14 with the mixtures of three or four mAb. Our experimental results support the rationale for active immunization with a polyvalent ganglioside vaccine or passive therapy with a combination of mAb to different gangliosides in patients with tumors of neuroectodermal origin. In addition, our studies have demonstrated that 9-O-acetyl-GD3 is a surprisingly effective target for immune attack, although it is a minor constituent of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号