首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A simultaneous determination of vanilmandelic acid, homovanillic acid, creatinine and uric acid using capillary electrophoresis was investigated. The optimum conditions of buffer concentration, pH and surfactant concentration were studied, and high resolution was obtained using a 30 mM phosphate buffer (pH 7.0) containing 150 mM sodium dodecyl sulfate. The detection was by UV absorbance at 245 nm and the column was a fused-silica capillary of 67 cm×75 μm I.D.. The determination of these metabolites in human urine was completed within 15 min without any interferences.  相似文献   

2.
A gas chromatographic–mass spectrometric method was developed for the enantioselective analysis of levetiracetam and its enantiomer (R)-α-ethyl-2-oxo-pyrrolidine acetamide in dog plasma and urine. A solid-phase extraction procedure was followed by gas chromatographic separation of the enantiomers on a chiral cyclodextrin capillary column and detection using ion trap mass spectrometry. The fragmentation pattern of the enantiomers was further investigated using tandem mass spectrometry. For quantitative analysis three single ions were selected from the enantiomers, enabling selected ion monitoring in detection. The calibration curves were linear from 1 μM to 2 mM for plasma samples and from 0.5 mM to 38 mM for urine samples. In plasma and urine samples the inter-day precision, expressed as relative standard deviation was around 10% in all concentrations. Selected ion monitoring mass spectrometry is suitable for quantitative analysis of a wide concentration range of levetiracetam and its enantiomer in biological samples. The method was successfully applied to a pharmacokinetic study of levetiracetam and (R)-α-ethyl-2-oxo-pyrrolidine acetamide in a dog.  相似文献   

3.
Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.  相似文献   

4.
The presence in urine of desmosine (DES) and isodesmosine (IDES), two crosslinked amino acids unique to the elastic fiber network, can be used as a specific indicator of degradation of mature elastin. Compared to methodologies so far available, the capillary electrophoretic technique reported here seems to be suitable and convenient for determining desmosines in urine of patients affected by chronic obstructive pulmonary disease (COPD). By using 35 mM sodium tetraborate pH 9.3 containing 65 mM SDS as the background electrolyte, the peaks of DES and IDES could be detected in hydrolyzed urine samples from controls and patients. Owing to the simultaneous determination of endogenous urinary creatinine used as appropriate internal standard, the amount of these amino acids could be accurately quantified. The results obtained were of the same order of magnitude as the data already reported in the literature for COPD patients. Thus micellar electrokinetic chromatography (MEKC) may be considered as a reliable technique for studying the turnover of the elastic fiber in clinical conditions.  相似文献   

5.
A method for determination of malondialdehyde with capillary electrophoresis using UV detection at 267 nm has been developed. The buffer system consisted of 10 mM borax and 0.5 mM CTAB at pH 9.3. Malondialdehyde migrated as the first peak in the electropherogram at 2.6 min. Limit of detection was 1.2 μM corresponding to 7.8 pg. Malondialdehyde was determined before and after stimulating lipid peroxidation with the addition of ferrous ammonium sulphate to homogenates of rat brain tissue. Proteins were precipitated by boiling and removed from the brain homogenates with centrifugation. No further pretreatment was made before injecting the homogenates on the CE system. Non-precipitated homogenates could also be analyzed, but this required washing of the capillary with 0.1 M NaOH before introduction of the next sample.  相似文献   

6.
A rapid and sensitive headspace gas chromatographic and mass spectrometric (GC–MS) method was developed for the determination of acrolein in human urine. A 0.5-ml urine sample in a glass vial containing propionaldehyde as an internal standard was heated at 80°C for 5 min. A 0.1-ml volume of headspace vapor was injected into a GC–MS instrument. Acrolein and propionaldehyde were coeluted at 3.1 min using a DB-1 capillary column, and well separated by selective ion monitoring (SIM) mode using ions m/z 56.05 and m/z 58.05. The interassay and intraassay coefficient of variation were 0.99% and 3.3%. The calibration curve demonstrated a good linearity throughout concentrations ranging from 1 to 1000 nM. However, due to a wide variation of acrolein evaporation rates from human urine, a calibration curve must be established for each urine specimen using a standard addition method and detection limit varied from 1 to 5 nM. The total analysis time for two samples from one urine specimen required about 15 min. Therefore, this method is convenient for the urgent monitoring of urinary acrolein in patients to whom alkylating agents are administered.  相似文献   

7.
Capillary electrophoretic (CE) profiling analysis combined with pattern recognition methods is described for the correlation between urinary nucleoside profiles and uterine cervical cancer. Nucleosides were extracted from urine specimens by solid-phase extraction in affinity mode using phenylboronic acid gel. CE separation was carried out with an uncoated fused-silica capillary (570 mm×50 μm I.D.) maintained at 20°C, using 25 mM borate–42.5 mM phosphate buffer (pH 6.7) containing 200 mM sodium dodecyl sulfate as the run buffer under the applied voltage of 20 kV. A total of 15 nucleosides were positively identified in urine samples (2 ml) from eight uterine myoma (benign tumor group), 10 uterine cervical cancer (malignant tumor group) patients and 10 healthy females (normal group) studied. The star symbol plots drawn based on each mean concentration of nucleosides normalized to that in normal group enabled one to discriminate malignant and benign groups from normal group. In addition, canonical discriminant analysis performed on the nucleoside data of 28 individual urine specimens correctly classified into three separate clusters according to groups in the canonical plot.  相似文献   

8.
The enantiomeric separation of metoprolol and its metabolites in human urine was undertaken using capillary electrophoresis (CE). Resolution of the enantiomers was achieved using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral selector. A 100-mM acetate buffer (pH 4.0) containing 5% 2-propanol and 10 mM CM-β-CD resulted in the optimum separation of the metoprolol enantiomers and its acidic metabolite in human urine. Following a single metoprolol oral administration of 100 mg racemic metoprolol tartrate, stereoselective pharmacokinetic analysis showed that urinary acidic metabolite 3 of metoprolol accounted for 62.3% of the dose with an R/S ratio of 1.23 and urinary unchanged metoprolol 1 accounted for 6.3% of the dose with an R/S ratio of 0.72.  相似文献   

9.
Separation in capillary electrophoresis is governed by various factors, including buffer type, buffer concentration, pH, temperature, voltage and micelles. Through proper adjustment of these parameters, nalidixic acid and its two major metabolites, 7-hydroxynalidixic and 7-carboxynalidixic, could be separated by micellar electrokinetic capillary chromatography using an electrophoretic electrolyte consisting of 50 mM borate buffer (pH 9) containing 25 mM sodium dodecyl sulphate and 10% acetonitrile. A linear relationship between concentration and peak area for each compound was obtained in the concentration range 0.15–100 μg ml−1, with a correlation coefficient greater than 0.999 and detection limits in the 0.2–0.7 ng ml−1 range. Intra- and inter-day precision values of about 0.8–1.2% RSD (n=11) and 1.3–2.0% RSD (n=30), respectively, were obtained. The method has been applied to the analysis of nalidixic acid and its two major metabolites in serum and urine with limits of sensitivity lower than 0.8 ng ml−1.  相似文献   

10.
In consideration of its relatively constant urinary excretion rate, creatinine in urine is a useful biochemical parameter to correct the urinary excretion rate of endogenous and exogenous biomolecules. Assays based on the reaction of creatinine and picric acid first reported by Jaffé in 1886 still belong to the most frequently used laboratory approaches for creatinine measurement in urine. Further analytical methods for creatinine include HPLC–UV, GC–MS, and LC–MS and LC–MS/MS approaches. In the present article we report on the development, validation and biomedical application of a new GC–MS method for the reliable quantitative determination of creatinine in human urine, plasma and serum. This method is based on the derivatization of creatinine (d0-Crea) and the internal standard [methyl-trideutero]creatinine (d3-Crea) with pentafluorobenzyl (PFB) bromide in the biological sample directly or after dilution with phosphate buffered saline, extraction of the reaction products with toluene and quantification in 1-μl aliquots of the toluene extract by selected-ion monitoring of m/z 112 for d0-Crea-PFB and m/z 115 for d3-Crea-PFB in the electron-capture negative-ion chemical ionization mode. The limit of detection of the method is 100 amol of creatinine. In an inter-laboratory study on urine samples from 100 healthy subjects, the GC–MS method was used to test the reliability of currently used Jaffé, enzymatic and HPLC assays in clinical and occupational studies. The results of the inter-laboratory study indicate that all three tested methods allow for satisfactory quantification of creatinine in human urine. The GC–MS method is suitable for use as a reference method for urinary creatinine in humans. In serum, creatine was found to contribute to creatinine up to 20% when measured by the present GC–MS method. The application of the GC–MS method can be extended to other biological samples such as saliva.  相似文献   

11.
12.
We applied micellar electrokinetic capillary chromatography to simultaneous separation and determination of nitrazepam and its major metabolites, 7-aminonitrazepam and 7-acetamidonitrazepam, in spiked urine. Prior to electrophoresis, the three compounds were successfully extracted from the spiked urine with commercial disposable solid-phase cartridges. The optimum running buffer for the separation was prepared by combining 85 parts of 60 mM sodium dodecyl sulphate—6 mM phosphate—borate, adjusted to pH 8.5, with 15 parts of methanol. The separation order, completed within 25 min, was 7-aminonitrazepam > 7-acetamidonitrazepam > nitrazepam, at an applied potential of 20 kV. We obtained reproducible electropherograms in successive repetitions, and few other peaks or interferences appeared in the electropherogram. The detection limits of the three compounds were 50–100 pg (0.1–0.2 μg/ml of analyte in spiked urine), and the recoveries were 78.9–100.8% for 1 μg/ml and 84.1–100.3% for 5 μg/ml. The application of this method to forensic or clinical samples is demonstrated.  相似文献   

13.
Creatine, which is increasingly being used as an oral supplement, is naturally present in the body. Studies on the fate of a particular dose of creatine require that the creatine be labeled, and for studies in humans the use of a stable isotopic label is desirable. The concentrations of total creatine and total creatinine were determined using HPLC. Creatine and creatinine were then separated using cation exchange chromatography and each fraction was derivatized with trifluoroacetic anhydride and the ratio of the deuterated:undeuterated species determined using GC-MS. Ratios of creatine:creatine-d(3), and creatinine:creatinine-d(3), and the concentrations of each of these species, were able to be determined in urine, plasma and red blood cells. Thus, the uptake of labeled creatine into plasma and red blood cells and its excretion in urine could be followed for a subject who ingested creatine-d(3). Creatine-d(3) was found in the plasma and red blood cells 10 min after ingestion, while creatine-d(3) and creatinine-d(3) were found in the urine collected after the first hour.  相似文献   

14.
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–electrospray ionization mass spectrometry (LC–ESI-MS) was evaluated for the determination of ranitidine. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary column by repeated aspirate/dispense steps. In order to optimize the extraction of ranitidine, several in-tube SPME parameters such as capillary column stationary phase, extraction pH and number and volume of aspirate/dispense steps were investigated. The optimum extraction conditions for ranitidine from aqueous samples were 10 aspirate/dispense steps of 30 μl of sample in 25 mM Tris–HCl (pH 8.5) with an Omegawax 250 capillary column (60 cm×0.25 mm I.D., 0.25 μm film thickness). The ranitidine extracted on the capillary column was easily desorbed with methanol, and then transported to the Supelcosil LC-CN column with the mobile phase methanol–2-propanol–5 M ammonium acetate (50:50:1). The ranitidine eluted from the column was determined by ESI-MS in selected ion monitoring mode. In-tube SPME followed by LC–ESI-MS was performed automatically using the HP 1100 autosampler. Each analysis required 16 min, and carryover of ranitidine in this system was below 1%. The calibration curve of ranitidine in the range of 5–1000 ng/ml was linear with a correlation coefficient of 0.9997 (n=24), and a detection limit at a signal-to-noise ratio of three was ca. 1.4 ng/ml. The within-day and between-day variations in ranitidine analysis were 2.5 and 6.2% (n=5), respectively. This method was also applied for the analyses of tablet and urine samples.  相似文献   

15.
Direct, quantitative capillary electrophoresis–electrospray ionisation mass spectrometric (CE–ESI-MS) and tandem mass spectrometric (CE–ESI-MS–MS) methods are described for the quantitation of 3-O-glucuronides of E- and Z-entacapone isomers (EEG and EZG) and tolcapone (TG) in urine. 3-O-Glucuronide of nitecapone was used as internal standard. Good separation of glucuronides was achieved with 20 mM ammonium acetate as separation solution at pH 6.84. Stacking was used to increase the sensitivity of the method by introducing samples in 5 mM ammonium acetate. CE–ESI-MS and CE–ESI-MS–MS methods are linear with correlation coefficients better than 0.9983 and 0.9982, and repeatable with relative standard deviations below 9 and 14%, respectively. The limit of detection (LOD) in CE–ESI-MS at signal-to-noise ratio 3 is 100 ng/ml for EEG and EZG and 250 ng/ml for TG. The CE–ESI-MS–MS method was the more sensitive; LOD was 7 ng/ml for all compounds, without any concentration of the sample.  相似文献   

16.
A selective and reproducible high-performance capillary electrophoretic (HPCE) method for the quantification of amikacin (AMK), an aminocyclitol antibiotic, in human plasma, has been developed for use in clinical laboratory tests. The method involves ultrafiltration (UF) of plasma before derivatization with the fluorescence derivatization reagent 1-methoxy-carbonylindolizine-3,5-dicarbaldehyde at room temperature for 15 min in the dark. An aliquot of the derivatives is directly introduced into the fused-silica capillary [75 cm (effective length)×50 μm I.D.] at the anode side by dynamic compression injection (50 hPa for 6 s). After electrophoresis with 40 mM SDS-20 mM phosphate-borate buffer (pH 7) in the micellar electrokinetic chromatography (MEKC) mode at 30 kV, the derivative had a retention time of 16.7 min and was detected by fluorescence intensity at 482 nm (with irradiation at 414 nm). The precision (n = 5) of the method is 4.08 and 1.59% (C.V.) at the 50 and 100 μg AMK/ml plasma levels, respectively. Linearity (r = 0.998) was established over the concentration range 5–100 mg of AMK/ml plasma and the detection limit (at a signal-to-noise ratio of 3) is 0.5 μg AMK/ml plasma. This assay method could potentially have wider application in the determination of other aminocyclitol antibiotics, such as arbekacin, dibekacin, kanamycin, in human plasma as well as of AMK.  相似文献   

17.
This paper describes the development of an analytical method for the separation and identification of neuropeptide Y (NPY) and two important NPY fragments by capillary electrophoresis (CE) and mass spectrometry (MS). A satisfactory separation and the highest sensitivity were obtained with formic acid at high concentrations (250 mM, pH 2.75). The addition of 25 or 50 mM triethylamine (TEA) improved the separation. When applying full scan CE–MS, the separated peptides could be detected and identified using the spectra of each peak. The use of TEA as an additive to the formic acid slightly decreased the sensitivity but was compensated by the improved efficiency. The best compromise for optimal separation and MS detection was found to be 50 mM formic acid to which 50 mM TEA was added. CE–MS could be used for identification of the decomposition products of NPY. Decomposition products with one amino acid difference, which could not be distinguished with CE–UV, could be distinguished with CE–MS.  相似文献   

18.
A simple, rapid and sensitive reversed-phase ion-pair high-performance liquid chromatographic method for the determination of N-acetylneuraminic acid and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in biological fluids is described. Determination of N-acetylneuraminic acid released by acidic hydrolysis, in serum, urine and saliva, and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in urine, without hydrolysis, was accomplished by injecting the sample without derivatization, into the chromatograph. Measurements were carried out isocratically within 6 min using a C18 column and a mobile phase of aqueous solution of triisopropanolamine, as ion-pair reagent, 60 mM, pH 3.5 at room temperature with UV absorbance detection. The present method is reported for the first time for the determination of sialic acids in biological fluids. Recoveries in serum, urine and saliva ranged from 90 to 102% and the limits of detection were 60 nM and 20 nM for the two sialic acids, respectively. The method has been applied to normal and pathological sera from patients with breast, stomach, colon, ovarian and cervix cancers, to normal urine and urine from patient with sialuria and to normal saliva.  相似文献   

19.
We describe a simple method for measuring orotic acid and uracil concentration in urine by capillary zone electrophoresis in 20 mM Na-borate buffer, pH 9.2. The method was applied for studying a patient with HHH (hyperornithinemia, hyperammonemia and homocitrullinuria) syndrome. A high value of uracil excretion was found during periods of relatively low orotic acid excretion and normal ammonemia. The orotic acid level in urine was increased by increasing protein intake.  相似文献   

20.
A method for the detection of 8-hydroxydeoxyguanosine by high-performance capillary electrophoresis (HPCE) was developed. Separations were performed in an uncoated silica capillary (44 cm × 75 μm I.D.) with a P/ACE system with diode-array detector. The separation of purine deoxynucleosides and 8-hydroxydeoxyguanosine was optimized with regard to pH, temperature, applied potential and hydrodynamic injection time. Optimum conditions were 20 mM borate buffer (pH 9.5), 25°C, 25 kV, 20 s load and detection at 254 nm. This method allowed the detection of 8-hydroxydeoxyguanosine in the presence of a 105-fold higher amount of deoxyguanosine. Isolated nuclei from K562 human hematopoietic cells were treated with 15 mM hydrogen peroxide for 2 h. The nuclei were extensively dialyzed and DNA was isolated, enzymatically hydrolyzed to the deoxynucleosides and analyzed by HPCE. DNA from hydrogen peroxide treated nuclei had a 4-fold higher content of 8-hydroxydeoxyguanosine than untreated controls. HPCE analysis of 8-hydroxydeoxyguanosine is fast and simple. Furthermore, it requires a very small sample volume, which makes it useful for biomedical and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号