首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two culture modes, continuous and semi-continuous, of the decolorization fungus,Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture ofG. candidum Dec 1 using a 5-l jar-fermentor showed high DyP activity at a low dilution ratio of 0.005h−1, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productivity in the drawn culture broth was 26.6 U/day, whereas the peroxidase productivity was 17.9 U/day in the continuous culture with a dilution rate of 0.005 h−1. The semi-continuous treatment system was an efficient decolorization method for the strain,G. candidum Dec 1.  相似文献   

2.
The polychaete Nereis falsa Quatrefages, 1866 is present in the area of El Kala National Park on the East coast of Algeria. Field investigations were carried out from January to December 2007 to characterize the populations’ reproductive cycle, secondary production and dynamics. Reproduction followed the atokous type, and spawning occured from mid-June to the end of August/early September when sea temperature was highest (20–23°C). The diameter of mature oocytes was approximately 180 μm. Mean lifespan was estimated to about one year. In 2007, the mean density was 11.27 ind. m−2 with a minimum of 7.83 ind. m−2 in April and a maximum of 14.5 ind. m−2 in February. The mean annual biomass was 1.36 g m−2 (fresh weight) with a minimum of 0.86 g m−2 in December and a maximum of 2.00 g m−2 in June. The population consisted of two cohorts distinguishable from size frequency distributions. One cohort corresponded to the recruitment of 2006 and the other appeared during the study period in September 2007. The annual production of N. falsa was 1.45 g m−2 year−1, and the production/biomass ratio was 1.07 year−1.  相似文献   

3.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

4.
Microbiol flora acclimated in continuous pilot scale bubble column fed with OMW was analysed. The most efficient isolated fungus was identified to white-rot fungus Geotrichum candidum. Decolorization of OMW by Geotrichum candidum was investigated by using Hadamard's matrix for screening the important parameters and optimize them in order to control the biological decolorization. Agitation favours the conversion of COD removed into Geotrichum candidum biomass especially with high arthoconodia and few mycelium. Dilution of OMW and aeration enhanced the mycelium growth and rammification which that allowed polyphenols hydrolysis and then a decolorization. The initial pH of OMW is suitable for its decolorization by Geotrichum candidum growth. Ammonium sulfate concentrations tested with different OMW dilutions showed that the COD:N:S ratio of 100:5:2 is suitable for higher black colour removal. With optimized conditions Geotrichum candidum growth on OMW in laboratory scale bubble column, the OD removal reached 70% and all fractions of polyphenolic compounds of OMW were oxidized.  相似文献   

5.
Mesic–dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five mesic–dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15–270 g m−2), annual NPP (214–282 g m−2 or 102–137 g C m−2) and vegetation biomass (330–2450 g m−2) varied greatly among communities. Vegetation dominated by Empetrum hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100–8200 g C m−2 and 80–330 g N m−2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra. Author Contributions  Matteo Campioli, Anders Michelsen, Roeland Samson, Raoul Lemeur—conceived and designed study, Matteo Campioli, Anders Michelsen, Andreas Demey, Annemie Vermeulen—performed research, Matteo Campioli—analyzed data, and Matteo Campioli—wrote the paper.  相似文献   

6.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

7.
Thirty single-spore isolates of a toxigenic fungus, Fusarium oxysporum, were isolated from asparagus spears and identified by species-specific polymerase chain reaction (PCR) and translation elongation factor 1-α (TEF) sequence analysis. In the examined sets of F. oxysporum isolates, the DNA sequences of mating type genes (MAT) were identified. The distribution of MAT idiomorph may suggest that MAT1-2 is a predominant mating type in the F. oxysporum population. F. oxysporum is mainly recognised as a producer of moniliformin—the highly toxic secondary metabolite. Moniliformin content was determined by high-performance liquid chromatography (HPLC) analysis in the range 0.05–1,007.47 μg g−1 (mean 115.93 μg g−1) but, also, fumonisin B1 was detected, in the concentration range 0.01–0.91 μg g−1 (mean 0.19 μg g−1). There was no association between mating types and the mycotoxins biosynthesis level. Additionally, a significant intra-species genetic diversity was revealed and molecular markers associated with toxins biosynthesis were identified.  相似文献   

8.
Withania somnifera is an important medicinal plant that contains withanolides and withaferins, both bioactive compounds. We have tested the effects of macroelements and nitrogen source in W. somnifera cell suspension cultures with the aim of optimizing the production of biomass and withanolide A. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0.0, 0.5, 1.0, 1.5 and 2.0× strength and of the nitrogen source [NH4 +/NO3 (mM/mM) ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20, and 14.38/37.60 (mM)] in Murashige and Skoog medium were tested for biomass and withanolide A production. The highest accumulation of biomass [147.81 g l−1 fresh weight (FW) and 14.02 g l−1 (dry weight (DW)] was recorded in the medium containing a 0.5× concentration of NH4NO3, and the highest production of withanolide A content was recorded in the medium with 2.0× KNO3 (4.36 mg g−1 DW). The NH4 +/NO3 ratio also influenced cell growth and withanolide A production, with both parameters being larger when the NO3 concentration was higher than that of NH4 +. Maximum biomass growth (110.45 g l−1 FW and 9.29 g l−1 DW) was achieved at an NH4 +/NO3 ratio of 7.19/18.80, while withanolide A production was greatest (3.96 mg g−1 DW) when the NH4 +/NO3 ratio was 14.38/37.60 mM.  相似文献   

9.
In a previous work it was reported adapted Trametes versicolor FPRL 28A INI culture was used to treat undiluted olive mill wastewater (OMW) without addition of any nutrients with significant amount of total phenolics were removed. However, decolorization was not so pronounced. Therefore, the aim of this study is to enhance the efficiency of dephenolization and decolorization of the primary treatment with adapted Trametes versicolor, incorporating a secondary biological treatment step using different microorganisms with sequential batch and co-culture applications. Through sequential batch applications Funalia trogii ATCC 20080 was found to have a higher potential in terms of total phenolics removal and decolorization amongst the tested organisms and better results were obtained from sequential batch applications as compared to co-culture experiments. In sequential batch applications, up to 91% total phenolics were removed and 64% decolorization was achieved after 24 days with 20% (v/v) inoculation rate of F. trogii when malt extract broth was used in inoculum preparation. In addition, significant accumulation of laccase (2019 ± 121.13Ul−1) and manganese peroxidase (463 ± 33.89 Ul−1) activities were attained. In co-culture applications highest total phenolics removal and decolorization were 78 and 39%, respectively, with non-adapted T. versicolor, whereas highest laccase and manganese peroxidase acitivities were obtained with F. trogii as 2219 Ul−1  ± 176.14. and 513 ± 4.12 Ul−1, respectively.  相似文献   

10.
Effect of soybean oil on mycelial biomass and pleuromutilin biosynthesis by Pleurotus mutilis-04 was investigated in shake flask culture. The maximum pleuromutilin production and mycelial biomass were 8.32 ± 0.02 g l−1 and 49.10 ± 1.00 g l−1 when 20 g l−1 soybean oil was fed at 24 and 96 h respectively. A repeated fed-batch fermentation strategy with feeding 3 g l−1 soybean oil from 96 to 144 h at 24 h intervals was developed successfully to maintain mycelial growth and provide abundant fatty acids for pleuromutilin biosynthesis. Compared with glucose as the sole carbon source, soybean oil was obviously beneficial for the production of pleuromutilin. The results suggested that manipulation of metabolic regulation by soybean oil was an effective way to enhance the production pleuromutilin.  相似文献   

11.
Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.  相似文献   

12.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

13.
This study was designed to identify rhizobial strains specific to greengram expressing higher tolerance against insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide-stress. Of the 50 bradyrhizobial isolates, the Bradyrhizobium sp. strain MRM6 showed tolerance up to 1,600 μg mL−1 against each of fipronil and pyriproxyfen. The tolerant Bradyrhizobium sp. (vigna) produced plant growth promoting substances in substantial amounts, both in the presence and absence of insecticides. The strain MRM6 was further used to investigate its impact on greengram grown in soils treated with 200 (the recommended dose), 400 and 600 μg kg−1 soil of fipronil and 1,300 (the recommended dose), 2,600 and 3,900 μg kg−1 soil of pyriproxyfen. Fipronil at 600 μg kg−1 soils and pyriproxyfen at 3,900 μg kg−1 soils had greatest toxic effects and decreased plant biomass, symbiotic efficiency, nutrient uptake and seed yield of greengram plants. The Bradyrhizobium sp. (vigna) inoculant when used with fipronil and pyriproxyfen significantly increased the measured parameters compared to the plants grown in soils treated solely with the same concentration of each insecticide. This study inferred that the Bradyrhizobium sp. (vigna) strain MRM6 may be exploited as bio-inoculant to increase the productivity of greengram exposed to insecticide-stressed soils.  相似文献   

14.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

15.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

16.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

17.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

18.
Microbial conversion of lignocellulose to hydrogen is a fascinating way to provide a renewable energy source. A mesophilic bacterium strain G1 that had high cellulose degradation and hydrogen production activity (2.38 mmol H2 g−1 cellulose) was isolated from rumen fluid and identified as the Enterococcus gallinarum. Hydrogen production from cellulose by using sequential co-cultures of a cellulosic-hydrolysis bacterium G1 and Ethanoigenens harbinense B49 was investigated. With an initial Avicel concentration of 5 g l−l, the sequential co-culture with G1 and strain Ethanoigenens harbinense B49 produced H2 yield approximately 2.97 mmol H2 g−1 cellulose for the co-culture system.  相似文献   

19.
The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l−1) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40°C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l−1. Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC–MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.  相似文献   

20.
A newly isolated novel bacterium from sediments contaminated with dyestuff was identified as Pseudomonas aeruginosa strain BCH by 16S rRNA gene sequence analysis. The bacterium was extraordinarily active and operative over a wide rage of temperature (10–60°C) and salinity (5–6%), for decolorization of Direct Orange 39 (Orange TGLL) at optimum pH 7. This strain was capable of decolorizing Direct Orange 39; 50 mg l−1 within 45 ± 5 min, with 93.06% decolorization, while maximally it could decolorize 1.5 g l−1 of dye within 48 h with 60% decolorization. Analytical studies as, UV–Vis spectroscopy, FTIR, HPLC were employed to confirm the biodegradation of dye and formation of new metabolites. Induction in the activities of lignin peroxidases, DCIP reductase as well as tyrosinase was observed, indicating the significant role of these enzymes in biodegradation of Direct Orange 39. Toxicity studies with Phaseolus mungo and Triticum aestivum revealed the non-toxic nature of degraded metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号